
- •1. Матрица. Определение. Виды матриц.
- •2. Действия над матрицей. Определители. Вычисление определителей.
- •3. Свойства определителей.
- •4. Формулы Крамера. Решение системы линейных алгебраических уравнений.
- •5. Обратная матрица. Её применение к решению систем уравнений.
- •6. Метод Гаусса. Решение слау. Ранг матрицы.
- •7. Множества. Действия над ними. Объединение, пересечение, вычитание.
- •8. Функция одной переменной. Способы задания. Область определения.
- •9. Последовательности, их пределы.
- •11. Первый и второй замечательные пределы.
- •17. Таблица производных. Формулы дифференцирования.
- •18. Логарифмическое дифференцирование.
- •19. Дифференцирование непрерывной (неявной) и параметрически заданной функции
- •20. Необходимые и достаточные условия экстремума.
- •21. Наибольшее и наименьшее значение функции на отрезке.
- •22. Функции многих переменных. Геометрический смысл функции двух переменных.
- •23. Наибольшее и наименьшее значение функции двух переменных.
- •24. Первообразная, неопределенный интеграл.
- •25. Таблица интегралов
- •26. Свойства интегралов
- •28. Интегрирование методом замены переменной и по частям.
- •30. Приведение системы уравнений к единочному базису.
- •31. Опреция однократного замещения
- •32. Симплексное преобразование. Опорные решения.
- •33. Симплексный метод решения злп.
- •34. Метод искусственного базиса.
- •35. Транспортная задача. Постановка т.З.
- •36. Методы получения первого опорного решения.
- •37. Метод потенциалов
17. Таблица производных. Формулы дифференцирования.
18. Логарифмическое дифференцирование.
Логарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием позволяет эффективно вычислять производные степенных и рациональных функций.
Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:
Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.
Отсюда видно, что искомая производная равна
19. Дифференцирование непрерывной (неявной) и параметрически заданной функции
Пусть x = f (t),y = y (t), tО [a,b] - достаточно гладкие функции. Тогда говорят, что функция задана параметрически. Примером параметрически заданной функции является уравнение окружности: x = acos t,y = asin t, tО [0,2p]. Рассмотрим вопрос о нахождении производных y = y(x) по переменной x.
В силу свойства инвариантности формы первого дифференциала следует, что y' = dy/dx, dy = y'(t)dt, dx = f'(t)dt. Поэтому
y'(x) = y'(t)/f'(t).
Используя формулу для второго дифференциала, получим
y(2)(x) = d(y'(x))/dx = (y '(t)/f '(t))'dt/f '(t)dt =
= (y ''(t) f '(t)-f ''(t)y '(t))/(f '(t))3.
Чтобы вычислить третью производную, запишем y'''(x) в следующем виде
y'''(x) = d(y''(x))/dx.
Пусть функция задана неявно уравнением F(x,y) = 0. Для нахождения производной функции, заданной неявно, нужно продифференцировать обе части уравнения, считая y = y(x) функцией от x, а затем из полученного уравнения найти производную y'. Чтобы найти производные высших порядков, нужно дифференцировать необходимое число раз уравнение F(x,y) = 0, и затем выразить нужную производную.
20. Необходимые и достаточные условия экстремума.
Понятие экстремума функции
21. Наибольшее и наименьшее значение функции на отрезке.
Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x, заданная на отрезке [0; 1], достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x0 всегда найдётся точка этого интервала, лежащая правее (левее) x0, и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x0. Аналогичные утверждения справедливы для функций многих переменных.