Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lineyka_ekz.rtf
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
44.28 Mб
Скачать

9. Последовательности, их пределы.

Последовательностью называется множество чисел, перенумерованных с помощью натуральных чисел и расставленных в порядке возрастания их номеров x1,x2,...xn

Числа x1,x2,...,xn — называются элементами последовательности, символ xn — общим элементом, а число n — его номером. Сокращенно последовательность обозначается символом {xn}.

Счетным множеством называется множество эквивалентное множеству натуральных чисел. Следовательно любая последовательность является счетным множеством.

Число а называется пределом последовательности {xn}, если для любого ε > 0 найдется номер n0 = n0(ε) ∈ N такой, что для всех номеров n > n0 выполняется неравенство |xn — a| <ε

Число b называется пределом последовательности {xn}=x1, x2,..., xn (lim {xn} = b; n→∞)

Последовательность {xn}, имеющая конечный предел а, называется сходящейся.

Последовательность, имеющая бесконечный предел или вообще не имеющая предела, называется расходящейся

10. Предел функции при x-->, x0 односторонние пределы.

Предел функции на бесконечности. Пусть задана функция у = f(x) с неограниченной сверху областью определения. Число b называется пределом данной функции при х, стремящемся к плюс бесконечности, если для любого числа существует такое положительное число М, что при всех значениях аргумента х из области определения, таких, что x > M, выполняется неравенство |f(x) – b| < e. Запись этого факта:

Если область определения данной функции неограниченна снизу, то число b называется пределом данной функции при х, стремящемся к минус бесконечности, если для любого числа e < 0 существует такое положительное число М, что при всех значениях аргумента х из области определения, таких, что x < –M, выполняется неравенство |f(x) – b| < e. Записывается это так:

11. Первый и второй замечательные пределы.

Предел отношения синуса к его аргументу равен единице в случае, когда аргумент стремится к нулю.

Функция не определена при x=0, так как числитель и знаменатель дроби обращаются в нуль. График функции изображен на рисунке.

Однако, можно найти предел этой функции при х→0.

Приведем доказательство записанной формулы. Рассмотрим окружность радиуса 1 и предположим, что угол α, выраженный в радианах, заключен в пределах 0 < α < π/2. (Так как четная функция и ее значения не изменяются при изменении знака α, то достаточно рассмотреть случай, когда α > 0.) Из рисунка видно, что

SΔOAC <Sсект.OAC <SΔOBC.

Так как указанные площади соответственно равны SΔOAC=0,5∙OC∙OA∙sinα=0,5sinα,Sсект.OAC=0,5∙OC2∙α=0,5α,SΔOBC=0,5∙OC∙BC=0,5tgα.

Следовательно, sin α < α < tg α.

Разделим все члены неравенства на sin α > 0:

Но . Поэтому на основании теоремы 4 о пределах заключаем, что . Выведенная формула и называется первым замечательным пределом.

Таким образом, первый замечательный предел служит для раскрытия неопределенности . Заметим, что полученную формулу не следует путать с пределами .

ВТОРОЙ ЗАМЕЧАТЕЛЬНЫЙ ПРЕДЕЛ

Второй замечательный предел служит для раскрытия неопределенности 1∞ и выглядит следующим образом

Обратим внимание на то, что в формуле для второго замечательного предела в показателе степени должно стоять выражение, обратное тому, которое прибавляется к единице в основании (так как в этом случае можно ввести замену переменных и свести искомый предел ко второму замечательному пределу).

12. Первое определение непрерывности функции в точке. И 13. Второе определение непрервности функции.

14. Основные теоремы о пределах.

15. Точки разрыва функции.

Пример.

Точка разрыва первого рода

Пример.

Точка разрыва второго рода.

Пример.

Точка устранимого разрыва

Пример.

16. Определение производной. Геометрический и механический смысл.

Производная. Рассмотрим некоторую функцию y = f ( x ) в двух точках x0 и x0 + : f ( x0 ) и f ( x0 + ). Здесь через обозначено некоторое малое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции: f ( x0 + ) - f ( x0 ) называется приращением функции. Производной функции y = f ( x ) в точке x0 называется предел:

Если этот предел существует, то функция f ( x ) называется дифференцируемой в точке x0 . Производная функции f ( x ) обозначается так:

Геометрический смысл производной. Рассмотрим график функции y = f ( x ):

Из рис.1 видно, что для любых двух точек A и B графика функции:

где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f ( x0 ) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0 ) имеет вид:

y = f ’( x0 ) · x + b .

Чтобы найти b, воспользуемся тем, что касательная проходит через точку A:

f ( x0 ) = f ’( x0 ) · x0 + b ,

отсюда, b = f ( x0 ) – f ’( x0 ) · x0 , и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f ( x0 ) + f ’( x0 ) · ( x – x0 ) .

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x ( t ) времени t. В течение интервала времени от t0 до t0 + точка перемещается на расстояние: x ( t0 + ) - x ( t0 ) =

, а её средняя скорость равна: va = / . При 0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v ( t0 ) материальной точки в момент времени t0 . Но по определению производной мы имеем:

отсюда, v ( t0 ) = x’ ( t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]