
- •1. Матрица. Определение. Виды матриц.
- •2. Действия над матрицей. Определители. Вычисление определителей.
- •3. Свойства определителей.
- •4. Формулы Крамера. Решение системы линейных алгебраических уравнений.
- •5. Обратная матрица. Её применение к решению систем уравнений.
- •6. Метод Гаусса. Решение слау. Ранг матрицы.
- •7. Множества. Действия над ними. Объединение, пересечение, вычитание.
- •8. Функция одной переменной. Способы задания. Область определения.
- •9. Последовательности, их пределы.
- •11. Первый и второй замечательные пределы.
- •17. Таблица производных. Формулы дифференцирования.
- •18. Логарифмическое дифференцирование.
- •19. Дифференцирование непрерывной (неявной) и параметрически заданной функции
- •20. Необходимые и достаточные условия экстремума.
- •21. Наибольшее и наименьшее значение функции на отрезке.
- •22. Функции многих переменных. Геометрический смысл функции двух переменных.
- •23. Наибольшее и наименьшее значение функции двух переменных.
- •24. Первообразная, неопределенный интеграл.
- •25. Таблица интегралов
- •26. Свойства интегралов
- •28. Интегрирование методом замены переменной и по частям.
- •30. Приведение системы уравнений к единочному базису.
- •31. Опреция однократного замещения
- •32. Симплексное преобразование. Опорные решения.
- •33. Симплексный метод решения злп.
- •34. Метод искусственного базиса.
- •35. Транспортная задача. Постановка т.З.
- •36. Методы получения первого опорного решения.
- •37. Метод потенциалов
3. Свойства определителей.
Замечание. Все что будет сказано относительно строк, будет относиться и к столбцам.
1° При транспонировании квадратной матрицы её определитель не меняется:
2° Общий множитель в строке можно выносить за знак определителя.
3° если квадратная матрица n -го порядка умножается на некоторое ненулевое число , то определитель полученной матрицы равен произведению определителя исходной матрицы на число в степени, равной порядку матриц.
4° Если каждый элемент в какой-то строке определителя равен сумме двух слагаемых, то исходный определитель равен сумме двух определителей, в которых вместо этой строки стоят первые и вторые слагаемые соответственно, а остальные строки совпадают с исходным определителем.
5° Если две строки определителя поменять местами, то определитель поменяет знак.
6° Определитель с двумя равными строками равен нулю.
7° Определитель с двумя пропорциональными строками равен нулю.
8° Определитель, содержащий нулевую строку, равен нулю.
9° Определитель не изменится, если к какой-то его строке прибавить другую строку, умноженную на некоторое число.
10° Определитель верхней (нижней) треугольной матрицы равен произведению его диагональных элементов.
11° Определитель произведения матриц равен произведению определителей. [A*B]=[A]*[B]
4. Формулы Крамера. Решение системы линейных алгебраических уравнений.
Если число строк совпадает с числом столбцов, т.е. m=n, то матрица А- квадратная и ее определитель - главный определитель системы. Когда главный определитель не равен 0 решение системы единственно и находится по формулам Крамера.
Теорема Крамера. Система n линейных уравнений с n неизвестными имеет единственное решение, если определитель системы не равен 0, и это решение находится по формуле Крамера:
где определители D называются определителями неизвестных хj и получаются из главного определителя путем замены j-го столбца столбцом свободных членов.
5. Обратная матрица. Её применение к решению систем уравнений.
Матрица А-1 называется обратной матрицей по отношению к матрице А, если А*А-1 = Е, где Е — единичная матрица n-го порядка.
Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули
Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.
Теорема условия существования обратной матрицы
Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.
Матрица А = (А1, А2,...Аn) называется невырожденной, если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.
Алгоритм нахождения обратной матрицы
Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
Записать обратную матрицу А-1, которая находится в последней таблице под матрицей Е исходной таблицы.
Решение системы уравнений, записанной в матричной форме, легко найти, если воспользоваться определением обратной матрицы:
(A)(A)-1 = (A)-1 (A) = (1),
где (1) – единичная диагональная матрица.
Действительно,
Умножим слева обе части уравнения на обратную матрицу коэффициентов системы (A)-1
Таким образом, для решения системы, необходимо обратить матрицу коэффициентов системы и умножить полученный результат на вектор-столбец свободных членов.