
- •Электромагнитная природа света, уравнения Максвелла.
- •Плотность потока энергии. Вектор Умова-Пойтинга. Интенсивность света. Световой вектор.
- •4, 11. Эллиптическая, круговая и линейная поляризация гармонических волн. Степень поляризации.
- •5. Поляризация при отражении и приломлении. Формула Френеля.
- •6. Закон Брюстера.
- •7. Распространение света в анизотропных средах. Поляризация при двойном лучепреломлении. Призма Николя. Призма Волластона.
- •8. Эллипсоид лучевых скоростей. Двуосные и одноосные кристаллы.
- •9. Закон Малюса
- •13. Искусственная анизотропия
- •1 4. Основные понятия фотометрии
- •18. Двухлучевая интерференция. Опыт Юнга. Ширина интерференционной полосы.
- •19. Классические интерференционные схемы. Бипризма Френеля. Зеркала Френеля.
- •20. Интерференция в тонких пленках. Полосы равной толщины. Полосы равного наклона. Кольца Ньютона.
- •21. Интерферометры: Майкельсона, Линника, Рождественского.
- •22. Многолучевая интерференция, интерферометр Фабри-Перо.
- •23. Дифракция света. Принцип Гюйгенса-Френеля.
- •24. Зоны Френеля. Построение дифракционных картин графическим способом.
- •28. Прямоугольная амплитудная дифракционная решетка
- •34. Центрированная оптическая система. Преломление на сферической поверхности.
- •35. Поперечное и угловое увеличение, кардинальные точки и плоскости. Линейное (поперечное) увеличение
- •Угловое увеличение
- •Продольное увеличение
- •Кардинальные точки и отрезки
- •37. Распространение света в изотропных диэлектриках, фазовая и групповая скорости.
- •38. Дисперсия света. Ход лучей в призме.
- •39. Электронная теория дисперсии. Нормальная дисперсия.
- •42. Тепловое излучение. Закон Кирхгофа. Формула Релея-Джинса.
22. Многолучевая интерференция, интерферометр Фабри-Перо.
Многолучевая интерференция – участие в интерференции более 2 когерентных лучей. В случае многолучевой интерференции по сравнению с двухлучевой происходит резкое увеличение яркости светлых интерференционных полос с одновременным уменьшением их ширины. Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления, нанесенных на отражающую поверхность. Явление интерференции света используется в спектральном анализе, для точного измерения расстояний и углов, в задачах контроля качества поверхности, для создания светофильтров, зеркал, просветляющих покрытий. На явлении интерференции основана голография.
2. Интерферометр Фабри-Перо. Многолучевой интерферометр Фабри — Перо состоит из двух стеклянных или кварцевых пластинок Р1 и Р2, на обращённые друг к другу и параллельные между собой поверхности к-рых нанесены зеркальные покрытия с высоким (85—98%) коэфф. отражения. Параллельный пучок света, падающий из объектива О1, в результате многократного отражения от зеркал образует большое число параллельных когерентных пучков с пост. разностью хода D=2nhcosq между соседними пучками, но разл. интенсивности. В результате многолучевой интерференции в фокальной плоскости L объектива О2 образуется интерференц. картина, имеющая форму концентрич. колец с резкими интенсивными максимумами, положение к-рых определяется из условия D=mλ (m — целое число), т. е. зависит от длины волны. Поэтому интерферометр Фабри — Перо разлагает сложное излучение в спектр. Применяется такой И. и как интерференционный спектр. прибор высокой разрешающей силы, к-рая зависит от коэфф. отражения зеркал r и от расстояния h между пластинками, возрастая с их увеличением.. Специальные сканирующие интерферометры Фабри — Перо с фотоэлектрич. регистрацией используются для исследования спектров в видимой, ИК и в сантиметровой области длин волн.
23. Дифракция света. Принцип Гюйгенса-Френеля.
Дифракция - явление захождения света в область гоеметрич. тени. Дифракция света – Отклонение света от прямолинейного направления распространения при прохождении препятствий соизмеримых с длиной волны.
Явление дифракции объясняется с помощью принципа Гюйгенса , согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.
Пусть плоская волна нормально падает на отверстие в непрозрачном экране. Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия. Явление дифракции характерно для волновых процессов. Поэтому если свет является волновым процессом, то для него должна наблюдаться дифракция, т. е. световая волна, падающая на границу какого-либо непрозрачного тела, должна огибать его (проникать в область геометрической тени). Из опыта, однако, известно, что предметы, освещаемые светом, идущим от точечного источника, дают резкую тень и, следовательно, лучи не отклоняются от их прямолинейного распространения. Почему же возникает резкая тень, если свет имеет волновую природу? К сожалению, теория Гюйгенса ответить на этот вопрос не могла.
Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.
Согласно
принципу Гюйгенса - Френеля,
световая волна, возбуждаемая каким-либо
источником S, может
быть представлена как результат
суперпозиции когерентных вторичных
волн, «излучаемых»
фиктивными источниками. Такими источниками
могут служить бесконечно малые элементы
любой замкнутой поверхности, охватывающей
источник S.Обычно
в качестве этой поверхности выбирают
одну из волновых поверхностей. В
соответствии
с принципом Гюйгенса - Френеля
в точке наблюдения
комплексная
амплитуда вектора напряжённости
электрического поля
гармонической
электромагнитной волны может быть
вычислена по формуле см рис.