
- •Министерство образования и науки
- •Конспект лекций по дисциплине Прикладная механика
- •Часть 2
- •§ 12. Виды изделий машиностроения
- •§ 13. Надежность и условия ее обеспечения
- •§ 14. Общие требования к современным машинам, их деталям и сборочным единицам
- •§ 15. Стадии разработки и этапы работ при проектировании
- •§ 16. Стандартизация и взаимозаменяемость деталей машин
- •§ 17. Основные понятия теории допусков и посадок
- •§ 34. Качество поверхностей обрабатываемых деталей
- •§ 18. Валы и оси
- •§ 19. Опоры валов и осей
- •§ 20. Смазочные материалы, применяемые в машиностроении (до хуя масла)
- •§ 21. Уплотнительные устройства
- •§ 22. Неразъемные соединения деталей
- •§ 23. Разъемные соединения деталей
- •§ 24. Фрикционные передачи
- •Вычислив межосевое расстояние, определяем размеры катков по формулам:
- •§ 25. Передачи гибкой связью: ремённые, цепные
- •§ 26. Передачи зацеплением
- •Цилиндрические прямозубые зубчатые передачи
- •Все основные параметры зубчатых колес выражают через модули, а именно: шаг зубьев
- •Межосевое расстояние цилиндрической передачи с внешним и внутренним зацеплением
- •Коэффициент осевого перекрытия косозубой передачи
- •Конические зубчатые передачи
- •Внешний диаметр вершин зубьев равен
- •Гипоидная и спироидная передачи
- •Общие сведения о цилиндрических и конических редукторах
- •Планетарные зубчатые передачи
- •Волновые передачи
- •Материалы для изготовления зубчатых колес
- •Конструкция цилиндрических колес
- •Межосевое расстояние червячной передачи
- •Следовательно, передаточное число червячной передачи
- •Крутящие моменты на валах червяка и червячного колеса связаны зависимостью
- •При ведомом червяке кпд червячной передачи определим по формуле
- •§ 27. Рычажные механизмы
- •§ 28. Кулачковые механизмы
- •Наибольшее напряжение сжатия на внутренней кромке пружины
- •§ 30. Механические муфты
- •Момент трения
- •§ 31. Корпусные детали
- •§ 12. Виды изделий машиностроения 48
§ 19. Опоры валов и осей
Валы и вращающиеся оси монтируют на опорах, которые определяют положение вала или оси, обеспечивают вращение, воспринимают нагрузки и передают их основанию машины. Основной частью опор являются подшипники, которые могут воспринимать радиальные, радиально-осевые и осевые нагрузки; в последнем случае опора называется подпятником, а подшипник носит название упорного.
По принципу работы различают подшипники скольжения, в которых цапфа вала скользит по опорной поверхности, и подшипники качения, в которых между поверхностью вращающейся детали и опорной поверхностью расположены тела качения.
От качества подшипников в значительной степени зависит работоспособность, долговечность и КПД машин.
Подшипники, работающие по принципу трения скольжения, называются подшипниками скольжения.
Простейшим подшипником скольжения является отверстие, расточенное непосредственно в корпусе машины, в которое обычно вставляют втулку (вкладыш) из антифрикционного материала.
Достоинства подшипников скольжения: малые габариты в радиальном направлении, хорошая восприимчивость ударных и вибрационных нагрузок, возможность применения при очень высоких частотах вращения вала и в прецизионных машинах, большая долговечность в условиях жидкостного трения, возможность использования при работе в воде или агрессивной среде.
Недостатки подшипников скольжения: большие габариты в осевом направлении, значительный расход смазочного материала и необходимость систематического наблюдения за процессом смазывания, необходимость применения дорогостоящих и дефицитных антифрикционных материалов для вкладышей. Вышеперечисленные достоинства и недостатки определяют применение подшипников скольжения, например в молотах, поршневых машинах, турбинах, центрифугах, координатно-расточных станках, для валов очень больших диаметров, а также для валов тихоходных машин. КПД подшипников скольжения =0,95...0,99.
Существует очень много конструкций подшипников скольжения, которые подразделяются на два вида: неразъемные и разъемные. Неразъемный подшипник (рис. 38) состоит из корпуса и втулки, которая может быть неподвижно закреплена в корпусе подшипника или свободно заложена в него («плавающая втулка»). Неразъемные подшипники используют главным образом в тихоходных машинах, приборах и т. д. Их основное преимущество – простота конструкции и низкая стоимость.
Разъемный подшипник (рис. 39) состоит из основания и крышки корпуса, разъемного вкладыша, смазочного устройства и болтового или шпилечного соединения основания с крышкой. Износ вкладышей в процессе работы компенсируется поджатием крышки к основанию. Разъемные подшипники значительно облегчают сборку и незаменимы для конструкций с коленчатыми валами. Разъемные подшипники широко применяются в общем и особенно тяжелом машиностроении.
У самоустанавливающе-гося подшипника скольжения (рис. 40) сопряженные поверх-ности вкладыша и корпуса выполнены по сфере. Сфери-ческая поверхность позволяет вкладышу самоустанавливать-ся, компенсируя неточности монтажа и деформации вала, обеспечивая тем самым |
Рис. 38 |
Рис. 39
равномерное распределение нагрузки по длине вкладыша. Такие подшипники применяются при большой длине цапф.
Сегментные подшипники с качающимися вкладышами (рис. 41) хорошо центрируют вал и обеспечивают стабильную работу подшипниковых узлов, поэтому их применяют для быстроходных валов, особенно при опасности возникновения вибраций.
Упорный подшипник скольжения (подпятник) (рис. 42) в основном предназначен для восприятия осевых нагрузок.
Корпуса подшипников обычно изготовляются из чугуна. Вкладыши изготовляют из подшипниковых материалов, которые
Рис. 40 |
Рис. 41 |
Рис. 42 |
должны иметь малый коэффици-ент трения скольжения по стальной поверхности вала, обеспечивать малый износ трущихся поверхностей и выдерживать достаточные удель-ные давления. Подшипниковые материалы бывают металлические (баббиты, бронзы, антифрикцион-ные чугуны, пористые спекаемые материалы), неметаллические (текстолит, древесно-слоистые |
пластики и др.), комбинированные (пористые металлы, пропитанные пластмассой; пластмассы с наполнителем из металла или графита; слоистые материалы типа металл–пластмасса).
Втулки подшипников скольжения (металлические, биметаллические и из спекаемых материалов) стандартизованы.
Подшипники, работающие по принципу трения качения, называются подшипниками качения. В настоящее время такие подшипники имеют наибольшее распространение. Подшипники качения изготовляют в большом диапазоне стандартных типоразмеров с наружным диаметром от 2 мм до 2,8 м и массой от долей грамма до нескольких тонн.
В большинстве случаев подшипник качения состоит из наружного и внутреннего кольца с дорожками качения, тел качения (шарики или ролики) и сепаратора, удерживающего тела качения на определенном расстоянии друг от друга (рис. 43). В некоторых случаях для уменьшения радиальных размеров одно или оба кольца подшипника могут отсутствовать. Достоинства подшипников качения: малые потери на трение и незначительный нагрев, малый расход смазки, небольшие габариты в осевом |
Рис. 43 |
направлении, невысокая стоимость (массовое производство) и высокая степень взаимозаменяемости.
К недостаткам подшипников качения относятся: чувствительность к ударным и вибрационным нагрузкам, большие габариты в радиальном направлении, малая надежность в высокоскоростных приводах.
Кольца и тела качения обычно изготовляют из подшипниковых сталей с высоким содержанием хрома, например ШХ15, ШХ20СГ, 18ХГТ и др. Сепараторы штампуют из качественной углеродистой конструкционной стали. Массивные сепараторы для высокоско- ростных подшипников изготовляют из медных и алюминиевых сплавов, текстолита, магниевого чугуна и др.
Кольца и тела качения подшипников закаливаются до твердости 60...65 HRCэ.
Классификация подшипников качения может осуществляться по многим признакам, а именно:
по форме тел качения (шариковые, цилиндрические и конические роликовые, игольчатые);
по числу рядов тел качения (однорядные, двухрядные и многорядные);
по направлению воспринимаемой нагрузки (радиальные, радиально-упорные, упорно-радиальные, упорные, комбинированные);
по возможности самоустановки (самоустанавливающиеся, несамоустанавливающиеся);
по габаритным размерам (серии диаметров и ширин);
по конструктивным особенностям.
ГОСТ устанавливает для подшипников качения следующие классы точности (в порядке повышения точности): 0; 6; 5; 4 и 2. Нормальный класс точности обозначается цифрой 0, сверхвысокий класс точности обозначается 2. В общем машиностроении обычно применяют подшипники класса точности 0.
Система условных обозначений шариковых и роликовых подшипников качения устанавливается ГОСТом. Нули, стоящие в обозначении левее значащих цифр, не показывают.
Основное условное обозначение подшипников качения ведется цифрами по следующей схеме:
(7) |
(6–5) |
(4) |
(3) |
(2–1) |
Серия ширин |
Конструктивная разновидность |
Тип подшипника |
Серия диаметров |
Внутренний диаметр |
Порядок отсчета цифр в условном обозначении подшипника ведется справа налево. Первые две цифры справа обозначают внутренний диаметр подшипников диаметром от 20 до 495 мм, причем обозначение получается путем деления значения диаметра на 5. Подшипники с внутренним диаметром 10 мм обозначаются 00; 12 мм – 01; 15 мм – 02; 17 мм – 03.
КПД одной пары подшипников качения =0,99...0,995.
Наиболее дешевыми и распространенными в машиностроении являются шариковые радиальные однорядные подшипники (рис. 43), способные воспринимать также осевую нагрузку в обоих направлениях, если она не превышает одной трети радиальной нагрузки. Эти подшипники допускают угловое смещение внутреннего кольца относительно наружного до 10'.
Цилиндрический роликовый подшипник с короткими цилиндрическими роликами (рис. 44, а) допускает только радиальную нагрузку. Нагрузочная способность таких подшипников по сравнению с однорядными шариковыми больше примерно в 1,5 раза, а долговечность в 3,5 раза. Подшипник допускает осевое смещение колец, но не допускает их угловое смещение.
Конический роликовый подшипник (рис. 44, б) с коническими роликами воспринимает радиальную и осевую нагрузку (радиально-упорный подшипник), обладает большой нагрузочной способностью, не допускает угловое смещение колец. Если угол контакта >45°, то подшипник называется упорно-радиальным.
Радиально-упорный шариковый подшипник (рис. 44, в) обладает по сравнению с коническими роликоподшипниками несколько меньшей нагрузочной способностью. Стандартные радиально-упорные шарикоподшипники выпускаются с углами контакта =12, 26 и 36°.
Сферический шариковый подшипник (рис. 44, г) имеет сферическую дорожку качения на наружном кольце, благодаря чему допускает значительное (до 2–3°) угловое смещение колец. Эти подшипники предназначены в основном для радиальной, но воспринимают и небольшую осевую нагрузку.
|
|
|
|
а |
б |
в |
г |
Рис. 44
Следует заметить, что применение более дешевых шариковых подшипников не гарантирует экономичность конструкции, так как более дорогие роликовые подшипники дают возможность уменьшить размеры и массу подшипниковых узлов и значительно увеличить их долговечность.
Кроме шариковых, существуют сферические роликовые подшипники с бочкообразными роликами.
Для обеспечения возможности самоустанавливаться при монтаже, компенсируя при этом несоосность посадочных мест, радиальные шариковые и роликовые подшипники могут быть изготовлены со сферической посадочной поверхностью наружного кольца.
На рис. 45 изображен упорный шариковый подшипник, предназначенный для восприятия односторонней осевой нагрузки. Кольцо с внутренним диаметром d, монтируемое на вал и имеющее зазор с корпусом, называется тугим, кольцо с внутренним диаметром d1, предназначенное для посадки в корпус и имеющее зазор с валом, называется свободным. Упорный подшипник может быть самоустанавливающимся за счет сферической поверхности базового торца. Упорные подшипники могут быть роликовыми. Для восприятия осевой нагрузки в обоих направлениях существуют двойные упорные подшипники качения.
Рис. 45 |
Рис. 46 |
Кроме перечисленных, существуют подшипники: игольчатые с витыми роликами, радиально-упорные шариковые с разъемным (внутренним или наружным) кольцом, с контактным уплотнением, с защитными шайбами и другие конструктивные разновидности.
На рис. 46 показан подпятник качения, смонтированный из радиального и упорного шарикоподшипников качения. Для компенсации возможных перекосов вала под свободное кольцо упорного подшипника положена прокладка из мягкого металла или линолеума.