
- •Предмет и цели естествознания. Естествознание как система наук о
- •2.Наука как процесс познания (тетрадь)
- •Методы научного познания:
- •3.Этапы развития естествознания
- •4.Революции в естествознании и их значение
- •2. Постклассическая физика (нач 20 в)- появление спец и общей теории относительности и квантовой механики
- •3. Синергетика (2 половина 20 века)-появление синергетики (науки о самоорганизации), теории порядка и хаоса)
- •Аристотелевская
- •Ньютоновская научная революция
- •Эйнштейновская революция[
- •5.Научные картины мира
- •Уровни и формы научного познания.
- •7.Создание первой естественнонаучной картины мира в древнегреческой культуре
- •8.Развитие естествознания в эпоху Средневековья
- •9.Развитие научных исследовательских программ и картин мира (тенденции развития)
- •10.Научный метод познания
- •11. Натурфилософская и научная картина мира.
- •15. Пространство и время в современной научной картине мира
- •26. Генетика и эволюция
- •1.1. Факторы эволюции. Естественный отбор
- •1.2. Теория пангенезиса ч.Дарвина
- •27. Основные представления о специальной теории относительности
- •28. Основные представления об общей теории относительности
- •29. Вселенная в разных масштабах: микро, макро, мегамир
- •1. Микромир
- •2. Макромир
- •3. Мегамир
- •30. Системные уровни организации материи
- •32. Сущность концепции «Большого взрыва» и расширяющейся Вселенной.
- •33. Экспериментальные доказательства концепции «Большого взрыва» и расширяющейся Вселенной.
- •Рождение звезды
- •48. Биосфера, человек в биосфере
Рождение звезды
Возникновение звезды начинается с уплотнения вещества внутри туманности. Образовавшееся уплотнение постепенно уменьшается в размерах, сжимаясь под воздействием гравитации. Во время этого сжатия, или коллапса, выделяется энергия, разогревающая газ и пыль и вызывающая их свечение. Возникает так называемая протозвезда. В ее центре, или ядре, плотность и температура вещества максимальные. Достигнув температуры около 10 000 000°С, в газе начинают протекать термоядерные реакции. Ядра атомов водорода соединяются, превращаясь в ядра атомов гелия. При таком синтезе выделяется огромное количество энергии. В процессе конвекции эта энергия переносится в поверхностный слой, а затем излучается в космос в виде света и тепла. Таким образом, протозвезда превращается в настоящую звезду. Излучение, исходящее из ядра, разогревает газовую среду, создавая давление направленное вовне, и, таким образом, препятствуя гравитационному коллапсу звезды. В результате, она обретает равновесие, то есть имеет постоянные размеры, постоянную поверхностную температуру и постоянное количество выделяемой энергии. Звезду на этой стадии развития астрономы называют звездой главной последовательности, указывая, таким образом. на занимаемое ею место на диаграмме Герцшпрунга-Ресселла. Эта диаграмма выражает связь между светимостью и температурой звезды. Протозвезды с небольшой массой никогда не разогреваются до температур, необходимых для начала термоядерных реакций. В результате сжатия эти звезды превращаются в тусклых красных и даже тусклых коричневых карликов. Первая коричневая звезда-карлик была открыта лишь в 1987г.
РОЖДЕНИЕ, ЖИЗНЬ И СМЕРТЬ ЗВЕЗД В Млечном Пути наблюдаются газопылевые облака. Некоторые из них настолько плотные, что начинают сжиматься под действием собственного тяготения. По мере сжатия плотность и температура облака повышается, и оно начинает обильно излучать в инфракрасном диапазоне спектра. На этой стадии сжатия облако получило название протозвезда. Когда температура в недрах протозвезды повышается до нескольких миллионов Кельвинов, в них начинаются термоядерные реакции превращения водорода в гелий и протозвезда превращается в обычную звезду главной последовательности. Продолжительность пребывания звезд на главной последовательности определяется мощностью излучения звезды (светимостью) и запасами ядерной энергии.
После выгорания водорода в недрах звезды она раздувается и становится красным гигантом или сверхгигантом в зависимости от массы.
Раздувшаяся оболочка звезды небольшой массы уже слабо притягивается ее ядром и, постепенно удаляясь от него, образует планетарную туманность.
После окончательного рассеяния оболочки остается лишь горячее ядро звезды — белый карлик. От звезды типа Солнца останется углеродный белый карлик.
Эволюция массивных звезд происходит более бурно. В конце своей жизни такая звезда может взорваться сверхновой звездой, а ее ядро, резко сжавшись, превратиться в сверхплотный объект — нейтронную звезду или даже в черную дыру. Сброшенная оболочка, обогащенная гелием и другими тяжелыми элементами, образовавшимися в недрах звезды, рассеивается в пространстве и служит материалом для формирования звезд нового поколения. В частности, есть основания полагать, что Солнце — звезда второго поколения.
В процессе эволюции протозвезда переходит на стадию звезды главной последовательности, исчерпав водород в ядре, становится красным гигантом. Звезды типа Солнца становятся белыми карликами, а звезды с большими массами взрываются и становятся либо нейтронными звездами, либо черными дырами.
38. Макромир. Физическая картина мира
Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10—8 до 10—16 см, а время жизни — от бесконечности до 10-24 с.
ФИЗИЧЕСКАЯ КАРТИНА МИРА
представление о мире и его процессах, выработанное физикой на основе эмпирического исследования и теоретического осмысления.
Физическая картина мира:
обобщает все ранее полученные знания о природе;
вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы (которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется).
Развитие самой физики непосредственно связано с физической картиной мира. При постоянном возрастании количества опытных данных картина мира весьма длительное время остается относительно неизменной. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и в появлении новой. В пределах данного этапа развитие физики идет эволюционным путем, без изменения основ картины мира. Оно состоит в реализации возможностей построения новых теорий, заложенных в данной картине мира. При этом она может эволюционировать, достраиваться, оставаясь в рамках определенных конкретно-физических представлений о мире. Ключевым в физической картине мира служит понятие “материя”, на которое выходят важнейшие проблемы физической науки. Поэтому смена физической картины мира связана со сменой представлений о материи. В истории физики это происходило два раза. Сначала был совершен переход от атомистических, корпускулярных (прерывных, дискретных) представлений о материи к континуальным (непрерывным).
39. Электромагнитная картина мира. Поле и вещество
Электромагнитная картина мира- Главная исходная идея электромагнитной картины мира( ЭМКМ )– это естественнонаучный материализм, а ее ядро – теория электромагнитного поля. ЭМКМ базировалась на следующих идеях:
·непрерывность материи (континуальность),
·материальность электромагнитного поля,
·неразрывность материи и движения,
·связь пространства и времени как между собой, так и с движущейся материей.
Материя и движение. Материя существует в двух видах: вещество и поле. Они строго разделены и их превращение друг в друга невозможно. Главным является поле, а значит основным свойством материи является непрерывность (континуальность) в противовес дискретности. Пространство и время. В первоначальной ЭМКМ абсолютное и пустое пространство (как в МКМ) было заполнено мировым эфиром. Электромагнитное поле представлялось как колебания эфира. С неподвижным эфиром пытались связать абсолютную систему отсчета, самую простую, самую лучшую. Создание СТО привело к отказу от эфира. Из постулатов СТО следовала относительность длины, времени и массы, т.е. их зависимость от системы отсчета. Из преобразований Лоренца, выведенных для перехода от одной ИСО к другой, следовало, что пространство и время связаны между собой и образуют единый четырехмерный мир (пространственно-временной континуум Минковского), являясь его проекциями. Свойства пространственно-временного континуума (метрика Мира, его геометрия) определяются распределением и движением материи. Событие, происходящее с некоторой частицей, характеризуется местом, где оно произошло (т.е. совокупностью значений x, y, z), и временем t, когда оно произошло. («Что? Где? Когда?»). В воображаемом четырехмерном пространстве, по осям которого откладываются пространственные координаты x, y, z и время t, событие можно изобразить точкой. Точка, изображающая событие в 4-мерном пространстве, называется мировой точкой. С течением времени мировая точка, соответствующая данной частице, перемещается в 4-мерном пространстве, описывая некоторую линию, которую называют мировой линией.
40. Микромир. Становление современной физической картины
мира
Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.
Становление современной физической картины мира
В конце XIX в. и начале ХХ в. в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, из которых состоит природа, считались атомы, то в конце XIX в. были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц).
Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.
В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что все элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путём было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определённых условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -свойства корпускул. Это явление получило название дуализма волны и частицы - представление, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля - волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов учёные вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.
Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм - наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.
Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.
Эти новые мировоззренческие подходы к исследованию естественно-научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине природы.
41.
Современные научные представления о структуре атома.
Кварковая модель атома. Кварк — частица с дробным электрическим зарядом.
Каждый атом состоит из тяжёлого ядра и электронной оболочки. Число протонов в ядре равно порядковому номеру в периодической таблице химических элементов Д.И.Менделеева. Протон имеет положительный электрический заряд, массу в 1836 раз больше массы электрона, размеры порядка 10-13см. Электрический заряд нейтрона равен 0. Протон, согласно кварковой гипотезе, состоит из двух «верхних» кварков и одного «нижнего», а нейтрон из одного «верхнего» и двух «нижних» кварков. Их нельзя представить в виде твёрдого шарика, скорее, они напоминают облако с размытыми границами, состоящее из рождающихся и исчезающих виртуальных частиц.
42.
Хи́мия — одна из важнейших и обширных областей естествознания, наука о веществах, их свойствах, строении и превращениях, происходящих в результате химических реакций, а также фундаментальных законах, которым эти превращения подчиняются.
Предмет химии — химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции.
Современная химия является одной из самых обширных дисциплин среди всех естественных наук.
Практическое применение химической теории сводится к решению трех основных проблем:
1. Получения максимального количества вещества с заданными свойствами с минимальными затратами исходных веществ и энергии на осуществление процесса;
2. Получения максимального количества энергии (теплоты или электричества) для дальнейшего ее использования;
3. Осуществления всех химических процессов с оптимальной скоростью.
43.
Микромир - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.
Фундаментальные частицы – по современным представлениям, не имеющие внутренней структуры и конечных размеров (например, кварки, лептоны)
Принцип Паули (частицы с полуцелым спином не могут одновременно находиться в одном и том же состоянии, например, в атоме не может быть электронов, у которых все квантовые числа одинаковы)
Классификация элементарных частиц:
- по массе: с нулевой массой (фотон); лёгкие (лептоны); тяжёлые (адроны)
- по времени жизни: стабильные
- по зарядам (электрическому, цветовому, гравитационному – масса)
Бозонная природа частиц-переносчиков фундаментальных взаимодействий (частицы-переносчики являются бозонами, т.е. у них целочисленные спины)
Вещество как совокупность устойчивых фермионных структур (кварки — нуклоны — атомные ядра — атомы с их электронными оболочками)
Размеры и масса ядра в сравнении с атомом (масса ядра составляет большую часть массы атома, размеры ядра малы по сравнению с размерами атома) Виртуальные частицы (это частицы, существующие очень короткое время, поэтому их нельзя зарегистрировать)
Физическое поле как совокупность реальных и виртуальных частиц
Физический вакуум как наинизшее энергетическое состояние физических полей, в котором отсутствуют реальные частицы
44.
Особенностью организации живой материи является ее многоуровневая структура, в которой первый уровень — организменный уровень, занимают живые организмы, одноклеточные и многоклеточные. Этот уровень называется организменным, т.к. рассматриваются отдельные организмы, без учета их связей и взаимодействий с другими. Минимальной живой системой на этом уровне является клетка.
Остальные уровни организации живого являются надорганизменными, т.е. они включают не только организмы, но и связи и взаимодействия между собой и окружающей средой:1. Первый уровень — популяционный уровень. Этот уровень включает в себя совокупность особей одного вида, которые имеют единый генофонд и занимают единую территорию.2. Второй уровень составляют различные системы популяций, которые называют биоценозами.3. Третий уровень организации содержит в качестве элементов разные биоценозы и в еще большей степени зависит от многочисленных земных условий. 4. Четвертый уровень организации возникает из объединения самых разнообразных биогеоценозов, и называются биосферой.
45.
Синергетика – теория самоорганизации.
Это новая наука, возникшая в 50е годы 20в, ее основателями явл Пригожин и Хакен.
Главная идея синергетики – это идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации является образование петли положительной обратной связи системы и среды. Система начинает самоорганизовываться и противостоит тенденции ее разрушения средой. Становление самоорганизации определяется характером взаимодействия случайных и необходимых факторов системы и ее среды.
Образование упорядоченных структур, происходящие не за счет действия внешних сил (факторов), а в результате внутренней перестройки системы, называется самоорганизацией. Самоорганизация - фундаментальное понятие, указывающее на развитие в направлении от менее сложных объектов к более сложным и упорядоченным формам организации вещества.
46.
Квантовая механика — это теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и их системы, с физическими величинами, непосредственно измеряемыми на опыте.
Для классической механики характерно описание частиц путем задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Опыт показал, что такое описание частиц не всегда справедливо, в частности, оно не применимо для описания микрочастиц.
Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую, удовлетворяющую требованиям специальной теории относительности.
Нерелятивисткая квантовая механика (как и механика Ньютона для своей области применимости) - это законченная и логически непротиворечивая фундаментальная физическая теория.
Релятивистская квантовая механика не является в такой степени завершенной и свободной от противоречий теорией.
47.
Энтропия — это сокращение доступной энергии вещества в результате передачи энергии.
Возрастание энтропии является характерным признаком естественных процессов и соответствует запасанию энергии при более низких температурах. Аналогично можно
сказать, что естественное направление процессов изменения характеризуется понижением качества энергии.
Первое начало термодинамики утверждает, что энергия изолированной системы (а возможно, и всей Вселенной) остается постоянной. Поэтому, сжигая ископаемое топливо - уголь, нефть, уран - мы не уменьшаем общих запасов энергии. В этом смысле энергетический кризис вообще невозможен, так как энергия в мире всегда будет оставаться неизменной. Однако, сжигая горсть угля и каплю нефти, мы увеличиваем энтропию мира, поскольку все названные процессы протекают самопроизвольно. Любое действие приводит к понижению качества энергии Вселенной. Поскольку в промышленно развитом обществе процесс использования ресурсов стремительно ускоряется, то энтропия Вселенной неуклонно возрастает.
Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:
В действительности принципы существования и возрастания энтропии ничего общего не имеют.