- •Бийский технологический институт (филиал)
- •Общая химическая технология
- •240701 – «Химическая технология органических соединений
- •240901 – «Биотехнология» очной и очно-заочной форм обучения
- •240901 – «Биотехнология» очной и очно-заочной форм обучения /
- •Содержание
- •1 Общие определения. Химико-технологический процесс
- •Вопросы, выносимые на экзамен
- •Основные тенденции развития химической технологии
- •1.3 Химико-технологический процесс и его содержание
- •2 Химико-технологические критерии хтп
- •3 Физико-химические закономерности в химической технологии
- •3.1 Влияние температуры
- •3.2 Сдвиг равновесия под влиянием давления
- •3.3 Сдвиг равновесия под влиянием реагирующих веществ
- •4 Скорость химической реакции
- •4.1 Влияние температуры
- •4.2 Влияние концентрации реагирующих веществ
- •4.3 Влияние давления
- •4.4 Активность катализатора
- •5 Гетерогенные процессы. Гетерогенные процессы в системе «газ–твердое тело»
- •5.1 Поверхность контакта фаз
- •5.2 Движущая сила процесса
- •6 Гетерогенные процессы в системах «газ–жидкость» и «жидкость–жидкость»
- •8 Общие сведения о химических реакторах. Реакторы идеального смешения
- •8.1 Химические реакторы с идеальной структурой потока в изотермическом режиме. Уравнение материального баланса для элементарного объема проточного химического реактора
- •8.2 Реактор идеального смешения (рис)
- •8.3 Реактор идеального смешения периодического действия
- •8.4 Реактор идеального смешения непрерывного действия
- •9 Реактор идеального вытеснения. Сравнение проточных реакторов
- •10 Каскад реакторов идеального смешения
- •11 Химические реакторы с неидеальной структурой потока
- •12 Распределение времени пребывания в проточных реакторах
- •13 Теплоперенос в химических реакторах
- •13.2 Совместное решение материального и теплового
- •13.3 Стационарный неадиабатический рис
- •13.4 Рив в неизотермическом режиме
- •14 Устройство реакторов
- •14.1 Реакторы для гомогенных процессов
- •14.2 Реакторы для проведения гетерогенных процессов
- •14.3 Реакторы для проведения реакций в системах
- •14.4 Реакторы для проведения реакций в системах «газ-жидкость» и «жидкость-жидкость»
- •14.5 Реакторы для проведения гетерогенно-каталитических реакций
- •14.6 Выбор контактного аппарата
- •15 Основы разработки химических производств
- •16 Сырьевая и энергетическая базы химической промышленности
- •16.1 Принципы обогащения сырья
- •16.2 Вода и воздух в химической промышленности
- •16.3 Энергетическая база химической промышленности
- •Литература
12 Распределение времени пребывания в проточных реакторах
Важной характеристикой структуры потока в проточных реакторах является функция распределения времени пребывания. Зная функцию распределения времени пребывания, можно оценить степень отклонения реального реактора от идеальных моделей, определить параметры моделей реакторов с неидеальной структурой потока, в частности, ячеечной и диффузионной, а также решить ряд других практических задач.
Экспериментально функция распределения времени пребывания может быть найдена путем исследования так называемых кривых отклика. Суть этого метода состоит в следующем. На входе в реактор создается некоторое возмущение. Таким возмущением является введение в основной поток вещества (индикатора). К индикатору (трассеру) предъявляются следующие требования:
– индикатор по какому-либо свойству (окраске, электропроводности, радиоактивности и т.д.) должен отличаться от реакционной смеси;
– индикатор не должен взаимодействовать с реакционной смесью и оборудованием;
– индикатор должен быстро определяться.
Возмущение на вход (входной сигнал) может быть ступенчатым (до момента времени τ0 = 0 индикатор не вводили в поток, а с момента τ0 его вводят в постоянном количестве), импульсным (мгновенное введение порции индикатора) или периодическим (например, иметь синусоидальный характер). Для получения кривой отклика на входной сигнал в разные моменты времени измеряют концентрацию или количество индикатора в потоке, выходящем из реактора (рисунки 12.1, 12.2, 12.3).
а – на входе в реактор; б – на выходе из РИВ; в – на выходе из
реального реактора при наличии продольного перемешивания
Рисунок 12.1 – Кривые отклика при ступенчатом
вводе индикатора
а – на входе в реактор; б – на выходе из РИВ; в – на выходе из
реального реактора при наличии продольного перемешивания
Рисунок 12.2 – Кривые отклика при импульсном вводе
а – при ступенчатом вводе индикатора;
б – при импульсном вводе индикатора
Рисунок 12.3 – Кривые отклика в РИС-Н
Д
ля
ячеечной и однопараметрической модели
построены зависимость F(r)
и C(τ)
от безразмерного времени (рисунки 12.4,
12.5, 12.6).
Рисунок
12.5 – Интегральные
функции
распределения времени
пребывания
для ячеечной модели
Рисунок
12.4 – Дифференциальные
функции
распределения времени
пребывания
для ячеечной модели
1
- Pе/
= 0,1; 2 - Pе/
= 1; 3- Pе/
= 10; 4 - Pе/
= 17,8; 5- Pе/
= ∞:
Рисунок 12.6 – Дифференциальные функции распределения
времени пребывания для диффузионной модели при различных
значениях критерия Pе/
И
з
сравнения рисунков видно, что функция
распределения для ячеечной модели при
N=1
практически совпадает с кривой
распределения
для диффузионной модели при Pe'
0, а при больших значениях
N
– с кривыми, для которых Pe'
>> 1. Этот результат вполне естественен,
так как и диффузионная, и ячеечная модели
являются лишь разными приближениями
одного и того же процесса.
Таким образом, если экспериментально найдена кривая отклика для реактора с реальным гидродинамическим режимом, то, сопоставив ее с расчетными кривыми, можно определить параметр модели.
