Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фізична хімія. Посібник.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.62 Mб
Скачать

Кількість енергії, що витрачається різними категоріями людей

Вид діяльності

Кількість енергії

кДж

ккал

Легка праця, сидячі (канцелярські) працівники

8400-11700

2000-2800

Помірна напруженість (студенти, лікарі, учні)

12500-15100

3000-3600

Важка фізична праця (ливарники, ковалі)

167000-20900

4000-5000

Особливо важка праця (землероби, спортсмени)

до 30100

до 7200

Враховуючи перший закон термодинаміки та основні за­кони термохімії, знаючи хімічний склад продуктів харчування та енергетичні характеристики поживних речовин, технолог повинен уміти з урахуванням фаху людини складати оптималь­ний раціон харчування (енергоменю). Значно складніше обрати необхідне для організму співідношення, наприклад, тваринних і рослинних жирів. Відповідні рекомендації розробляють біологи, лікарі, дієтологи.

4. Друге начало термодинаміки

Як зазначалось, І закон термодинаміки характеризує енергетичні баланси і дає змогу обчислити теплові ефекти хімічних реакцій за стандартних умов (закон Гесса), але він не відповідає на питання щодо можливості перебігу того або іншого процесу.

Друге начало термодинаміки ґрунтується на закономірностях, згідно з якими можна знаходити напрям процесу і визначати умови, за яких можливі ті чи інші процеси. Другий закон термодинаміки, так само як і перший, є постулатом, він був сформульований на основі досвіду. Сфера застосування цього закону обмежена: лише для макросистем, які складаються з великої кількості частинок.

Другий закон термодинаміки має важливе значення для хімії. Він встановлює можливість, напрям і межу перебігу самодовільних процесів, тобто вказує, який процес і в якому напрямку може протікати при певних умовах (температура, тиск, концентрація), не поглинаючи енергію зовні.

Історично другий закон термодинаміки було сформульовано раніше першого. Треба відзначити, що з часом він отримував нові визначення, які ставали все більш точнішими. Вперше основне положення другого закону термодинаміки було висловлено М.В.Ломоносовим у 1747р.

Перше математичне формулювання умов перетворення теплоти в корисну роботу було зроблено Саді Карно (1824р.), у працях німецького фізика Клаузіуса (1850р.) і англійського фізика Томсона (лорда Кельвіна) у 1854р. Були розвинені ідеї, які вийшли далеко за межі першопочаткової теплотехнічної задачі. Пізніше Максвелл, Больцман і Гіббс встановили зв’язок другого закону термодинаміки з молекулярно-кінетичними уявленнями. Це привело до статистичного тлумачення другого закону термодинаміки.

Термодинамічні величини поділяють на інтенсивні та екстенсивні.

Інтенсивні величини не залежать від кількості речовини або маси системи і при взаємодії системи вони прямують до вирівнювання – Т, Р, концентрація.

Екстенсивні величини пропорційні до кількості речовини і при взаємодії системи вони складаються (додаються) – об’єм, маса, теплоємність.

Є багато різних формувань ІІ закону термодинаміки, всі вони логічно пов’язані між собою.

Одне з формулювань ІІ закону термодинаміки.

Самодовільно можуть відбуватися лише такі процеси, у результаті яких вирівнюються ті або інші фактори інтенсивності. Рівновазі відповідають однакові значення фактора інтенсивності в кожній частині системи.

Для самодовільного перебігу процесу мають бути створені умови, які сприяють такому вирівнюванню. Наприклад, для теплообміну потрібні різні температури в різних частинах системи або в системі та навколишньому середовищі.

У реальних процесах переважно вирівнюється не один, а кілька факторів інтенсивності.

М.В.Ломоносов, а пізніше Р. Клаузіус (1850р.) сформулювали ІІ закон термодинаміки так: теплота не може самодовільно переходити від холодного тіла до гарячого.

Іншими словами, процеси можуть самодовільно відбуватись лише в напрямі, який веде до вирівнювання факторів інтенсивності - теплота може переходити від гарячого тіла до холодного; газ може розширюватися лише з одночасним зниженням тиску; електричний струм протікає від вищого потенціалу до нижчого тощо.

Кожний процес, що протікає самодовільно, приводить систему до рівноваги. Рівновага досягається і в хімічних реакціях. Розрізняють оборотні і необоротні хімічні реакції. Слід вказати, що теоретично всі реакції є оборотними, а необоротність пов’язана зі зміщенням рівноваги.

В залежності від умов, при яких проходить дана реакція (концентрація с, тиск Р, температура Т), може змінюватися напрямок реакції і стан рівноваги. Наприклад,

2 + О2 2О

ця реакція при низьких температурах самодовільно йде в прямому напрямку і рівновага настає при досить малих концентраціях водню і кисню. При високих температурах самодовільно йде зворотна реакція – розкладання води на водень і кисень. Рівновага встановлюється при досить великих концентраціях цих газів в системі. Як видно на прикладі даної реакції, зміна умов (температури) обумовлює і направлення процесу, і стан рівноваги.

Зазвичай для реалізації хімічного процесу в промисловості необхідно заздалегідь знати умови, при яких він буде йти в необхідному направленні і з найбільшим виходом продуктів реакції. Визначити ці умови можна тільки, використовуючи основні положення другого закону термодинаміки.