
- •1 Билет Закон сохранения электрического заряда
- •1.2. Закон Кулона
- •2 Билет Напряженность электростатического поля
- •4 Билет
- •1.4. Теорема Гаусса для электростатического поля
- •Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •3 Билет Потенциал электростатического поля
- •Связь напряженности с потенциалом. Эквипотенциальные поверхности
- •7 Вопрос Типы диэлектриков. Поляризация диэлектриков
- •Сегнетоэлектрики
- •5 Вопрос Поляризованность. Напряженность поля в диэлектрике
- •Электрическое смещение.
- •6 Вопрос Теорема Гаусса для электростатического поля в диэлектрике
- •8 Вопрос Проводники в электростатическом поле
- •9 Вопрос Электрическая емкость уединенного проводника
- •Конденсаторы
- •10 Вопрос Энергия системы зарядов уединенного проводника и конденсатора. Энергия электростатического поля
- •12 Вопрос Электрический ток. Сила и плотность тока
- •15 Вопрос
- •16 Вопрос Закон Ома. Сопротивление проводников
- •17 Вопрос
- •16 Вопрос
- •Правила Кирxгофа
- •19 Вопрос Магнитное поле и его характеристики
- •Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •20 Вопрос
- •Магнитная постоянная. Единицы магнитной индукции напряженности магнитного поля
- •3.5. Магнитное поле движущегося заряда
- •3.6. Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •3.8. Ускорители заряженных частиц
- •3.9. Циркуляция вектора для магнитного поля в вакууме
- •3.10. Магнитное поле соленоида и тороида
- •3.11. Поток вектора магнитной индукции
- •3.12. Работа по перемещению проводника и контура с током в магнитном поле
- •3.13. Явление электромагнитной индукции
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •3.15. Вращение рамки и магнитном поле
- •3.16. Вихревые токи (токи Фуко)
- •3.17. Индуктивность контура. Самоиндукция
- •3.18. Токи при размыкании и замыкании цепи
- •3.19. Взаимная индукция
- •3.20. Трансформаторы
- •3.21. Энергия магнитного поля
- •4. Магнитные свойства вещества
- •4.1. Магнитные моменты электронов и атомов
- •4.3. Намагниченность. Магнитное поле в веществе
- •4.4. Ферромагнетики и их свойства
- •4.5.Природа ферромагнетизма
- •5. Основ ы теории максвелла для электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2.Ток смещения
- •5.3.Уравнение Максвелла для электромагнитного поля
7 Вопрос Типы диэлектриков. Поляризация диэлектриков
Первую
группу диэлектриков (N2,
Н2,
О2,
СО2,...)
составляют вещества, молекулы
которых имеют симметричное строение,
т.е. центры "тяжести" положительных
и отрицательных зарядов в отсутствие
внешнего электрического поля
совпадают и, следовательно, дипольный
момент молекулы
равен нулю. Молекулы
таких
диэлектриков называются неполярными.
Под действием
внешнего электрического поля заряды
неполярных молекул смещаются в
противоположные стороны (положительные
по полю, отрицательные против поля),
и молекула приобретает дипольный момент.
Второю группу диэлектриков (Н2О, NH3, SO2, CO2,. .) составляют вещества, молекулы которых имеют асимметричное строение, т.е. центры "тяжести" положительных и отрицательных зарядов не совпадают. Таким образом, эти молекулы в отсутствие внешнего электрического поля обладают дипольным моментом. Молекулы таких диэлектриков называются полярными. При отсутствии внешнего поля, однако, дипольные моменты полярных молекул вследствие теплового движения ориентированы в пространстве хаотично, и их результирующий момент равен нулю. Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.
Третью группу диэлектриков (NaCl, KCI, КВг,...) составляют вещества, молекулы которых имеют ионное строение. Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков. В этих кристаллах нельзя выделить отдельные молекулы, а рассматривать их можно как систему двух вдвинутых одна в другую ионных подрешеток. При наложении на ионный кристалл электрического поля происходит некоторая деформация кристаллической решетки или относительное смещение подрешеток, приводящее к возникновению дипольных моментов.
Ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрическое поле и тепловое движение) возникает преимущественная ориентация дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура.
Ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных - против поля, приводящем к возникновению дипольных моментов.
Сегнетоэлектрики
Существует группа веществ, которые могут обладать спонтанной (самопроизвольной) поляризованностью в отсутствие внешнего поля. Это явление было первоначально открыто для сегнетовой соли, в связи с чем подобные вещества получили название сегнетоэлектриков.
Сегнетоэлектрики отличаются от остальных диэлектриков рядом характерных особенностей:
В то время как у обычных диэлектриков ε составляет несколько единиц, достигая в виде исключения нескольких десятков (у воды, например ε=81), диэлектрическая проницаемость сегнетоэлектриков бывает порядка нескольких тысяч.
Рис. 21 |
|
зависят от предыстории диэлектрика. Это явление называется гистерезисом. При циклических изменениях поля зависимость Р от Е следует изображенной на рис. 21 кривой, называемой петлей гистерезиса.
Поведение поляризованности сегнетоэлектриков аналогично поведению намагниченности ферромагнетиков. По этой причине сегнетоэлектрики называют иногда ферроэлектриками.
Области спонтанной поляризации называются также доменами. Под действием внешнего поля моменты доменов поворачиваются как целое, устанавливаясь по направлению поля.