
- •1 Билет Закон сохранения электрического заряда
- •1.2. Закон Кулона
- •2 Билет Напряженность электростатического поля
- •4 Билет
- •1.4. Теорема Гаусса для электростатического поля
- •Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •3 Билет Потенциал электростатического поля
- •Связь напряженности с потенциалом. Эквипотенциальные поверхности
- •7 Вопрос Типы диэлектриков. Поляризация диэлектриков
- •Сегнетоэлектрики
- •5 Вопрос Поляризованность. Напряженность поля в диэлектрике
- •Электрическое смещение.
- •6 Вопрос Теорема Гаусса для электростатического поля в диэлектрике
- •8 Вопрос Проводники в электростатическом поле
- •9 Вопрос Электрическая емкость уединенного проводника
- •Конденсаторы
- •10 Вопрос Энергия системы зарядов уединенного проводника и конденсатора. Энергия электростатического поля
- •12 Вопрос Электрический ток. Сила и плотность тока
- •15 Вопрос
- •16 Вопрос Закон Ома. Сопротивление проводников
- •17 Вопрос
- •16 Вопрос
- •Правила Кирxгофа
- •19 Вопрос Магнитное поле и его характеристики
- •Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •20 Вопрос
- •Магнитная постоянная. Единицы магнитной индукции напряженности магнитного поля
- •3.5. Магнитное поле движущегося заряда
- •3.6. Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •3.8. Ускорители заряженных частиц
- •3.9. Циркуляция вектора для магнитного поля в вакууме
- •3.10. Магнитное поле соленоида и тороида
- •3.11. Поток вектора магнитной индукции
- •3.12. Работа по перемещению проводника и контура с током в магнитном поле
- •3.13. Явление электромагнитной индукции
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •3.15. Вращение рамки и магнитном поле
- •3.16. Вихревые токи (токи Фуко)
- •3.17. Индуктивность контура. Самоиндукция
- •3.18. Токи при размыкании и замыкании цепи
- •3.19. Взаимная индукция
- •3.20. Трансформаторы
- •3.21. Энергия магнитного поля
- •4. Магнитные свойства вещества
- •4.1. Магнитные моменты электронов и атомов
- •4.3. Намагниченность. Магнитное поле в веществе
- •4.4. Ферромагнетики и их свойства
- •4.5.Природа ферромагнетизма
- •5. Основ ы теории максвелла для электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2.Ток смещения
- •5.3.Уравнение Максвелла для электромагнитного поля
3.17. Индуктивность контура. Самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био-Савара-Лапласа, пропорциональна току. Поэтому сцепленный с током магнитный поток Ф пропорционален току I в контуре:
Ф = LI, (3.31)
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток, следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы го ка называется самоиндукцией.
Из
выражения (3.31)
определяется единица индуктивности
генри
(Гн): Им
- индуктивность такого контура, магнитный
поток самоиндукции которого при
токе в 1 А равен 1 Вб: 1 Гн = 1
.
Рассчитаем индуктивность бесконечно длинного соленоида. Полный магнитный поток через соленоид равен
.
Подставив это выражение в формулу (3.31), получим
,
т.е. индуктивность соленоида зависит от числа витков соленоида N, ею длины , площади S и магнитной проницаемости п вещества, из которою изготовлен сердечник соленоида.
Можно сказать, что индуктивность контура в общем случае записи t только от геометрической формы контура, ею размеров и магии той проницаемости той среды, в которой он находится
Применяя к явлению самоиндукции закон Фарадея, получим
.
Если контур не деформируется и магнитная проницаемость среды не изменяется, то L = const и
,
(3.33)
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению тока в нем.
Если
ток со временем возрастает, то
> 0 и
<
0, т.е. ток самоиндукции
направлен навстречу току, обусловленному внешним источником, и тормозит его возрастание. Если ток со временем убывает, то < 0 и > 0, те индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что изменение тока тормозится тем сильнее, чем больше индуктивность контура.
3.18. Токи при размыкании и замыкании цепи
При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции Экстратоки самоиндукции, согласно правилу Ленца, направлены гак, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При включении источника тока экстратоки имеют такое же направление, что и ослабевающий ток.
,
(3.34)
где
-
постоянная, называемая временем
релаксации. Из (3.34) следует, что т есть
время, в течение которого сила тока
уменьшается в е раз.
Рис. 53 |
Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (3.34) и определяется кривой 1 на рис. 53. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании. |
При замыкании цепи I = І0(1-
),
где І0=
- установившийся ток (при t→∞). Установление
тока происходит тем быстрее, чем меньше
индуктивность цепи и больше ее
сопротивление. Возникновение значительных
э.д.с. самоиндукции может привести к
пробою изоляции.