Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.52 Mб
Скачать

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемойэлектронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-nпереход попадают в дырочную область p-типа, в которой они становятсянеосновными. Ставшие неосновными, электроны будут поглощаться основныминосителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принятьиз области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется взакрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительномуполюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать токубольшое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода Iобр. Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда пол

6. Обратная ветвь вах реального p-n перехода

Под обратной ветвью вольт-амперной характеристики p-n перехода понимается зависимость обратного тока от значения обратного напряжения:

Iобр = f(Uобр). Для идеального p-n перехода обратная ветвь определяется выражением

Iобр = - Iо , (14)

где .

Iо называют тепловым током, поскольку он создается теми неосновными носителями заряда, которые возникают в результате тепловой генерации в объемах полупроводника, прилегающих к границам p-n перехода. Величина этих объемов при площади p-n перехода S = 1, равна диффузионной длине неосновных носителей заряда. Носители заряда, генерируемые за пределами этих объемов, не могут участвовать в создании Iо , так как за время жизни они не в состоянии достичь границы p-n перехода. Тепловой ток удваивается при увеличении температуры на каждые 10С. Этот ток также называют током насыщения, так как он не зависит от внешнего напряжения.

Отличия реальной обратной ветви ВАХ p-n перехода от идеальной состоят в следующем: обратный ток реальной ВАХ растет при увеличении обратного напряжения p-n перехода и имеет значение, не равное Iо. Данная зависимость приведена на рис.11. Это объясняется тем, что в реальном p-n переходе обратный ток содержит несколько составляющих:

Iобр = Iо + Iт/г + Iу , (15)

где Iо - ток насыщения, или тепловой ток; Iт/г - ток термогенерации; Iу - ток утечки.

Следует отметить, что обратный ток кремниевых p-n переходов много меньше обратного тока германиевых p-n переходов. Это связано с различием ширины запрещенной зоны: Wз Ge = 0,72 эВ; Wз Si = 1,12 эВ. Ток насыщения определяется в основном неосновными носителями заряда, имеющими место в примесном полупроводнике. Так, например, в полупроводнике n-типа это дырки – pn, концентрация которых определяется в соответствии с законом действующих масс: pn = ni2 / nn. Известно, что ni Ge  1013см-3, а ni Si  1010см-3 . При равной концентрации примеси получаем, что концентрация неосновных носителей заряда в кремниевом полупроводнике на шесть порядков меньше, чем в германиевом примесном полупроводнике, поэтому ток Iо в кремниевом p-n переходе пренебрежимо мал.

Р ис.11. Обратная ветвь ВАХ p-n перехода: 1 – идеальный переход; 2 – реальный переход

Обратный ток германиевого p-n перехода включает следующие составляющие: Iобр Ge  Iо + Iу ,а обратный ток кремниевого p-n перехода - Iобр Si  Iт/г + Iу . Для германиевых p-n переходов обратный ток в основном определяется током насыщения и имеет величину десятки микроампер. Ток термогенерации у них мал и им обычно пренебрегают. Незначительный наклон обратной ветви ВАХ германиевых p-n переходов обусловлен током утечки.

Обратный ток кремниевого p-n перехода примерно на три - четыре порядка меньше обратного тока германиевого перехода и определяется током термогенерации, т.е дрейфовым током неосновных носителей, возникающих в результате тепловой генерации в самом p-n переходе. Iт/г увеличивается с ростом обратного напряжения, так как происходит расширение p-n перехода, в соответствии с соотношением (9). Ток термогенерации невелик из-за малого объема p-n перехода, ток утечки при современной технологии изготовления p-n перехода имеет незначительную величину. Отсюда в целом обратный ток кремниевого p-n перехода имеет небольшое значение, по сравнению с обратным током германиевых p-n переходов.