
- •1Основные понятия тмм. Машина, механизм, звено, кинематическая пара.
- •2Классификация кинематических пар:
- •4. Конструктивно-функциональная классификация механизмов
- •5 Задачи и методы кинематического анализа механизмов.
- •6 Кинематический анализ рычажных механизмов методом планов. Аналоги скоростей и ускорений.
- •7 Виды зубчатых механизмов. Передаточное отношение.
- •8 Кинематика зубчатых механизмов с неподвижными осями колес
- •9 Кинематика дифференциальных и планетарных механизмов.
- •10 Динамическая модель машинного агрегата (звено приведения).
- •11 Динамическая модель машинного агрегата (звено приведения).
- •16 Задачи и методы силового расчёта механизмов.
- •18 Условие статической определимости кинематических цепей.
- •19Силовой расчет рычажных механизмов методом планов
- •20Виды трения
- •21 Трение во вращательных парах
- •22 Трение в винтовой кинематической паре
- •23Трение качения в высших кинематических парах
- •24 Кпд при последовательном и параллельном соединении механизмов
- •25 Неуравновешенность вращающихся масс и её виды
- •2 7Статическая и динамическая балансировка вращ масс
- •28 Виды кулачковых механизмов. Фазы движения выходного звена. Законы движения выходного звена.
- •30 Основная теорема зубчатого зацепления. Теорема Виллиса
- •31 Эвольвента окружности её уравнение и своиства.
- •32 Основные геометрические параметры зубчатого колеса.
- •33 Свойства эвольвентного зацепления
- •34 Качественные показатели зубчатого зацепления
- •35 Метод нарезания зубчатых колес.
- •36 Явление подрезания зубьев. Минимальное число зубьев нулевого колеса, нарезаемое без подрезания
19Силовой расчет рычажных механизмов методом планов
Зная активные силы, действующие на звенья механизма и силы инерции этих звеньев, можно произвести его кинетостатический расчет, т.е. определить реакции в кинематических парах и уравновешивающую силу (момент) на входном звене, причем эта сила (момент) является движущей при совпадении ее направления с направлением движения входного звена или силой (моментом) сопротивления, если ее направление противоположно этому движению.
При графоаналитическом решении используется метод плана сил. Механизм расчленяется на структурные группы Ассура и начальные звенья. Расчет ведется, начиная с последней структурной группы и заканчивается расчетом входного звена.
При расчете структурных групп к ним прикладываются все действующие силы, включая силы инерции и реакции отброшенных связей. Каждая из неизвестных реакций, при необходимости, может быть разложена на две составляющие по выбранным направлениям, например, вдоль оси звена (нормальная Fn) и перпендикулярно оси (тангенциальная Ft). При равенстве числа уравнений статики числу неизвестных реакций их можно определить аналитически и графически, построив многоугольник (план) сил. Неизвестные определятся из условия замкнутости векторной суммы сил. Графическое определение реакций в кинематических парах плоских механизмов с помощью планов сил применяется не только вследствие наглядности, но и потому, что внешние силы, действующие на звенья механизма, обычно известны лишь приближённо, и точность простейших графических построений оказывается вполне достаточной
20Виды трения
Трение – это сопротивление, возникающее при относительном перемещении двух соприкасающихся тел в плоскости их контакта. Сила трения – это сила сопротивления, направленная противоположно сдвигающему усилию.
На схеме (рис. 37) представлена классификация видов трения по основополагающим признакам.
Трение скольжения – это сопротивление, возникающее при перемещении одной и той же поверхности одного тела по поверхности другого тела.
Основными положениями закона сухого трения скольжения являются:
1. Сила трения скольжения на плоскости прямо пропорциональна нормальному давлению в определенном диапазоне скоростей и и нагрузок.
2. Направление силы трения скольжения противоположно относительной скорости трущихся тел.
3. Точное положение точки приложения силы трения скольжения неизвестно.
4. Трение зависит от материала и состояния трущихся поверхностей.
5. С увеличением скорости движения сила трения в большинстве случаев уменьшается, приближаясь к некоторому постоянному значению.
6. С возрастанием удельного давления сила трения в большинстве случаев увеличивается.
21 Трение во вращательных парах
Вращательная кинематическая пара образуется цапфой (опорной частью вала) и охватывающим её подшипником. Для того чтобы цапфа, находящаяся под действием нескольких приложенных к ней сил, могла вращаться, необходимо, чтобы равнодействующая Р этих сил (рис. 1) создавала момент не меньший момента силы трения.
Разложив
силу Р на нормальную Рn
и тангенциальную Рτ
составляющие и обозначив через: r плечо
действия силы Р относительно оси вращения
цапфы; R – радиус цапфы; λ - угол между
линией действия силы Р и радиусом,
проведённым в точку приложения силы P,
получим:
момент, вращающий цапфу, равен
Для
возможности движения необходимо
соблюдение условия
,
откуда
,
и поэтому
Следовательно, момент силы Р не может вращать цапфы, если линия действия силы Р проходит внутри круга с радиусом Rsinφ. Такой круг получил название – круга трения. (φ-возможно угол трения)