
- •2.Влияние генезиса на строительные свойста грунта оснований.
- •3. Характеристики физического состояния грунтов.
- •4. Основные различия грунтов класса глин и песков.
- •5. Структура и текстура грунтов, их влияние на строительные свойства грунтов.
- •8. Основные и производные фазовые характеристики.
- •9. Газообразная фаза грунтов и её влияние на строительные свойства грунтов.
- •10. Основные закономерности механики грунтов.
- •11. Компрессионная зависимость. Определение модуля деформации.
- •12.Влияние влажности и водопроницаемости на скорость сжатия грунта.
- •13. Испытания грунтов полевой пробной нагрузкой в полевых условиях штампами.
- •15. Влияние различных категорий воды на строительные свойства грунтов.
- •17.Закон ламинарной фильтрации. Коэффициент фильтрации.
- •18. Фильтрационные свойства грунтов, особенности фильтрации воды в песчаных и глинистых грунтах.
- •19.Влияние водопроницаемости на скорость сжатия.
- •20. Работа временных водных потоков.
- •21.Определение фильтрационных характеристик грунта полевыми методами.
- •22. Сопротивление грунтов сдвигу; консолидированный и неконсолидированный сдвиг.
- •24. Фазы напряженно-деформированного состояния грунтов.
- •25. Распределение напряжений в полупространстве от действия сосредоточенной силы на поверхности.
- •26.Распределение контактных напряжений под подошвой фундаментов. Формы эпюр для жестких фундаментов. Определение размеров фундамента.
- •27. Метод угловых точек и примеры использования в расчетах
- •28.Распределение напряжений в основании от собственного веса грунта
- •29. Взаимосвязь между механическими и физическими характеристиками грунтов.
- •30.Приближенный расчет устойчивости откосов. Факторы, влияющие на устойчивость откосов.
- •32.Укрепление неустойчивых откосов и оползневых склонов.
- •36.Определение размеров плитных фундаментов.
- •37. Влияние глубины заложения и ширины фундамента на величину расчетного сопротивление его основания.
- •38.Влияние подстилающего слоя на размеры плитного фундамента.
- •39.Конструирование плитных фундаментов.
- •40.Свайные фундаменты, их классификация по различным признакам.
- •41. Принципиальное отличие свай стоек от защемленных свай в грунте.
- •42.Методы определения несущей способности свай
- •44.Набивные и забивные сваи, особенности устройства, достоинства и недостатки.
- •45. Виды ростверков на сваях.
- •46.Виды деформ.Оснаваний зданий и сооружений.
- •47.Методы определения деформаций оснований ф-ов.
- •48. Основные пути уменьшения смещений сооружений и их неравномерности
- •49. Основы проектирования оснований и фундаментов в соответствии с евронормами.
- •50. Воздействия, Учитываемые при проектировании фундаментов по евронормам.
- •51.Определение несущей способности грунтов оснований плитных фундаментов по еврокод7
- •52. Основные расчетные положения предъявляемые для расчета оснований фундаментов опору трубопроводов транспортных и гидросооружений
- •53.Фундаменты мелкого заложения под опоры трубопроводов транспортных и гидросооружений
- •54.Свайные фундаменты под опоры трубопроводов транспортных и гидросооружений
- •55.Определение контактных напряжений и деформаций в гидросооружениях.
- •56.Фильтр.Расчет оснований гидросооружений.
- •57. Виды фундаментов глубокого заложения
- •58. Опускные колодцы
- •59. Фундаменты из сборных цилиндрических железобетонных оболочек.
- •60. Метод «стена в грунте». Свайные и траншейные стены.
- •61. Противофильтрационные диаграмм, завесы, ванны.
- •2 .Противофильтрационные устройства из полиэтиленовой пленки подразделяются на:
- •62. Сущность буроинъекционной технологии.
- •63.Определение несущей способности буроинъекционных анкеров и свай
- •64. Сущность армирования грунтов, области рационального применения. Принципы расчета ограждений из армируемого грунта.
- •65. Струйная технология в геотехнике, ее сущность, рациональные области применения.
- •67. Геотехнические методы при реконструкции и причины их обуславливающие.
- •69. Замена и уплотнение слабых грунтов.
- •70. Искусственное закрепление грунтов.
- •71.Особенности устройства фундаментов зданий и сооружений на илах и ленточных глинах
- •72.Возведение сооружения на заторфованных грунтах и торфах
- •73.Особенности устройства фундаментов на набухающих грунтах
- •74.Методы строительства фундаментов на мерзлых грунтах
- •75.Фундаменты на просадочных грунтах
- •76.Устройство фундаментов при динамических нагрузках
- •78.Фундаменты опор трубопроводов в экстремальных условиях.
- •79. Способы ограждения глубоких строительных котлованов.
- •80.Принципы геотехники при возведении зданий вблизи существующих
- •81.Строительное водопонижение уровня грунтовых вод. Способы водопонижения.
- •82. Дренажи, их виды и используемые материалы.
- •83. Влияние подземных вод (включая агрессивные) на подземные части зданий и сооружений.
- •84. Способы борьбы с сыростью и защиты подвалов от подтопления.
- •85. Расчет оснований по предельным состояниям.
- •86. Исходные данные для проектирования оснований и фундаментов.
- •87. Роль качества изысканий, проектирования и строительства.
- •89. Факторы риска при проектировании и устройстве фундаментов зданий и сооружений.
18. Фильтрационные свойства грунтов, особенности фильтрации воды в песчаных и глинистых грунтах.
Песчаные грунты сильно подвержены разжижению, особенно пылеватые. Это происходит за счет переукладки зерен, взвешенных в воде. Разжижение бывает поверхностным и внутренним. Следовательно, рыхлые водонасыщенные песчаные основания, земляные сооружения, подверженные действию фильтрационного потока, необходимо уплотнять до состояния средней плотности, а по возможности – до плотного состояния. Движении воды в глинистых грунтах, в отличие от песчаных, начинается при достижении некоторого градиента напора, преодалевающее внутреннее сопротивление движению воды.а-песчаный грунт,б-глинистый грунт.
Для
глинистого грунта выделяют три участка
фильтрации:
1-начинается от 0 до 1,когда фильтрация практически =0. 2-переходной от 1до2 криволинейный участок. 3-прямолинейный от 2 до 3,хар.процесс установления фильтрации.
19.Влияние водопроницаемости на скорость сжатия.
Сжимаемостью грунтов называют способность их уменьшаться в объеме (давать осадку) под действием внешнего давления. Сжимаемость песчаных грунтов невелика и зависит от их гранулометрического, минералогического состава и плотности сложения. Сжатие песчаных грунтов связано с взаимным перемещением отдельных зерен, а при больших давлениях - и с их раздроблением. Сжатие этого типа грунтов протекает быстро и независимо от влажности. Сжимаемость глинистых пород зависит от их минералогического состава, степени дисперсности, состава обменных катионов, пористости, а также от состояния породы и условий сжатия.
Скорость сжатия глинистых грунтов зависит от влажности грунта и от мощности сжимаемого слоя.
При полном насыщении образца водой скорость сжатия грунтов до известной степени определяется их водопроницаемостью. При малых значениях коэффициента фильтрации и большей мощности сжимаемого слоя процесс сжатия может длиться многие годы. При этом сжатие происходит до наступления состояния гидростатического равновесия, т. е. такого состояния, когда из грунта отжата часть воды, оказывавшая сопротивление сжатию, и внешняя нагрузка целиком воспринимается скелетом грунта. Сжимаемость определяется коэффициентом сжимаемости:
СС=m0=(е1-е2)/(Р2-Р1),
где е1 и е2 – коэффициенты пористости до и после испытания;
Р2-Р1 – приложенная в процессе испытания нагрузка.
Модуль общей деформации, учитывающий как упругие, так и остаточные деформации грунта, может быть получен по данным его испытаний в компрессионном приборе. Модуль деформации используется для определения конечных осадок сооружений.
Чем больше в грунте связной воды, тем меньше его водопроницаемость, тем медленнее происходит процесс уплотнения под нагрузкой.
20. Работа временных водных потоков.
Временные водные потоки подразделяются на равнинные и горные. Возникают они на склонах при таянии снега и выпадении атмосферных осадков.
Работа временных водных потоков на равнинах включает деятельность плоскостных и русловых потоков. Их активность в огромной мере зависит от степени развития растительности, в особенности травянистой – чем плотнее дернина, тем меньшее воздействие временных водотоков на горные породы. Таким образом, в наибольшей степени подвержены водной эрозии лишенные естественной растительности склоны.
Плоскостной (склоновый) сток представлен тонкой, сравнительно однородной пленкой воды, медленно стекающей по гладкой поверхности пологого склона. В этих условиях энергия (живая сила) потока мала, поэтому смываются и сносятся вниз только сравнительно мелкие и легкие рыхлые частицы. Перенесенный материал отлагается у подножья и в нижней части склона, образуя шлейф, наибольшая мощность которого наблюдается в основании склона.
Русловой сток временных водотоков возникает на склонах, поверхность которых осложнена разного рода выемками и ложбинками. Скапливающаяся в них вода, благодаря значительной массе, может совершать большую эрозионную и транспортирующую работу, причем не по плоскости, а линейно. Таким образом, деятельность временных русловых потоков на равнинах ведет к образованию оврагов.