
- •2.Влияние генезиса на строительные свойста грунта оснований.
- •3. Характеристики физического состояния грунтов.
- •4. Основные различия грунтов класса глин и песков.
- •5. Структура и текстура грунтов, их влияние на строительные свойства грунтов.
- •8. Основные и производные фазовые характеристики.
- •9. Газообразная фаза грунтов и её влияние на строительные свойства грунтов.
- •10. Основные закономерности механики грунтов.
- •11. Компрессионная зависимость. Определение модуля деформации.
- •12.Влияние влажности и водопроницаемости на скорость сжатия грунта.
- •13. Испытания грунтов полевой пробной нагрузкой в полевых условиях штампами.
- •15. Влияние различных категорий воды на строительные свойства грунтов.
- •17.Закон ламинарной фильтрации. Коэффициент фильтрации.
- •18. Фильтрационные свойства грунтов, особенности фильтрации воды в песчаных и глинистых грунтах.
- •19.Влияние водопроницаемости на скорость сжатия.
- •20. Работа временных водных потоков.
- •21.Определение фильтрационных характеристик грунта полевыми методами.
- •22. Сопротивление грунтов сдвигу; консолидированный и неконсолидированный сдвиг.
- •24. Фазы напряженно-деформированного состояния грунтов.
- •25. Распределение напряжений в полупространстве от действия сосредоточенной силы на поверхности.
- •26.Распределение контактных напряжений под подошвой фундаментов. Формы эпюр для жестких фундаментов. Определение размеров фундамента.
- •27. Метод угловых точек и примеры использования в расчетах
- •28.Распределение напряжений в основании от собственного веса грунта
- •29. Взаимосвязь между механическими и физическими характеристиками грунтов.
- •30.Приближенный расчет устойчивости откосов. Факторы, влияющие на устойчивость откосов.
- •32.Укрепление неустойчивых откосов и оползневых склонов.
- •36.Определение размеров плитных фундаментов.
- •37. Влияние глубины заложения и ширины фундамента на величину расчетного сопротивление его основания.
- •38.Влияние подстилающего слоя на размеры плитного фундамента.
- •39.Конструирование плитных фундаментов.
- •40.Свайные фундаменты, их классификация по различным признакам.
- •41. Принципиальное отличие свай стоек от защемленных свай в грунте.
- •42.Методы определения несущей способности свай
- •44.Набивные и забивные сваи, особенности устройства, достоинства и недостатки.
- •45. Виды ростверков на сваях.
- •46.Виды деформ.Оснаваний зданий и сооружений.
- •47.Методы определения деформаций оснований ф-ов.
- •48. Основные пути уменьшения смещений сооружений и их неравномерности
- •49. Основы проектирования оснований и фундаментов в соответствии с евронормами.
- •50. Воздействия, Учитываемые при проектировании фундаментов по евронормам.
- •51.Определение несущей способности грунтов оснований плитных фундаментов по еврокод7
- •52. Основные расчетные положения предъявляемые для расчета оснований фундаментов опору трубопроводов транспортных и гидросооружений
- •53.Фундаменты мелкого заложения под опоры трубопроводов транспортных и гидросооружений
- •54.Свайные фундаменты под опоры трубопроводов транспортных и гидросооружений
- •55.Определение контактных напряжений и деформаций в гидросооружениях.
- •56.Фильтр.Расчет оснований гидросооружений.
- •57. Виды фундаментов глубокого заложения
- •58. Опускные колодцы
- •59. Фундаменты из сборных цилиндрических железобетонных оболочек.
- •60. Метод «стена в грунте». Свайные и траншейные стены.
- •61. Противофильтрационные диаграмм, завесы, ванны.
- •2 .Противофильтрационные устройства из полиэтиленовой пленки подразделяются на:
- •62. Сущность буроинъекционной технологии.
- •63.Определение несущей способности буроинъекционных анкеров и свай
- •64. Сущность армирования грунтов, области рационального применения. Принципы расчета ограждений из армируемого грунта.
- •65. Струйная технология в геотехнике, ее сущность, рациональные области применения.
- •67. Геотехнические методы при реконструкции и причины их обуславливающие.
- •69. Замена и уплотнение слабых грунтов.
- •70. Искусственное закрепление грунтов.
- •71.Особенности устройства фундаментов зданий и сооружений на илах и ленточных глинах
- •72.Возведение сооружения на заторфованных грунтах и торфах
- •73.Особенности устройства фундаментов на набухающих грунтах
- •74.Методы строительства фундаментов на мерзлых грунтах
- •75.Фундаменты на просадочных грунтах
- •76.Устройство фундаментов при динамических нагрузках
- •78.Фундаменты опор трубопроводов в экстремальных условиях.
- •79. Способы ограждения глубоких строительных котлованов.
- •80.Принципы геотехники при возведении зданий вблизи существующих
- •81.Строительное водопонижение уровня грунтовых вод. Способы водопонижения.
- •82. Дренажи, их виды и используемые материалы.
- •83. Влияние подземных вод (включая агрессивные) на подземные части зданий и сооружений.
- •84. Способы борьбы с сыростью и защиты подвалов от подтопления.
- •85. Расчет оснований по предельным состояниям.
- •86. Исходные данные для проектирования оснований и фундаментов.
- •87. Роль качества изысканий, проектирования и строительства.
- •89. Факторы риска при проектировании и устройстве фундаментов зданий и сооружений.
12.Влияние влажности и водопроницаемости на скорость сжатия грунта.
Все грунты в той или иной степени способны сжиматься. Эту их черту называют сжимаемостью. Под этим понятием подразумевают способность грунтов уменьшаться в объеме или оседать впоследствии определенного внешнего давления.
На скорость сжатия грунтов сильно влияет уровень влажности грунта, а также мощность сжимаемого слоя. Если образец грунта будет полностью насыщен водой, то скорость его сжатия до определенной степени будет определяться водопроницаемостью грунта. Если коэффициент фильтрации незначительный, а мощность слоя, который сжимается, будет больше, то процесс сжимаемости может происходить на притяжении многих лет. Процесс сжатия длится до той степени, пока не наступит состояние гидростатического равновесия. Это состояние, при котором из грунта отжимается часть воды, которая оказывает сопротивление на сжатие, и тогда внешнюю нагрузку на себя берет скелет грунта
Влияние скорости сжатия воды из пор грунта достаточно существует и может быть проявлена в виде графика: Сжимаемость определяется коэффициентом сжимаемости:
СС=m0=(е1-е2)/(Р2-Р1),
где е1 и е2 – коэффициенты пористости до и после испытания;
Р2-Р1 – приложенная в процессе испытания нагрузка.
Модуль общей деформации, учитывающий как упругие, так и остаточные деформации грунта, может быть получен по данным его испытаний в компрессионном приборе. Модуль деформации используется для определения конечных осадок сооружений.
Чем больше в грунте связной воды, тем меньше его водопроницаемость, тем медленнее происходит процесс уплотнения под нагрузкой.
13. Испытания грунтов полевой пробной нагрузкой в полевых условиях штампами.
Полевые испытания пробной статической нагрузкой используются для определения как деформационных, так и прочностных характеристик в тех случаях, когда оказывается трудно или даже невозможно отобрать образцы грунта без нарушения их природного состояния. Кроме того, полевые испытания являются основным методом исследования трещиноватых скальных грунтов
И
спользуют
специальную установку, представляющую
собой жесткий штамп 1, соединенный с
плаформой 2, к которой прикладывается
ступенчато возрастающая внешняя нагрузка
3. Диаметр штампа выбирают в зависимости
от свойств грунта, для песчаного больше,
для глинистого меньше.
По результатам испытаний строят график зависимости осадки от нагрузки. В начале она считается линейной и модуль деформации определяется по формуле:
E=ωd(1-υ2)Δp/Δs
ω- коэф., для кругл. штампов =1;
d – диаметр штампа; υ – коэф. попер. деф.; Δp и Δs приращения давл и осадки
Также определяют коэф. постели-
коэффициент, характеризующий податливость основания, численно равный усилию, которое надо приложить к единице площади основания, чтобы дать ему осадку, равную единице длины.
14 Виды воды и ее движение в грунтах. Виды воды:парообразная,жидкая(связная{прочносвязанная,рахлосвязанная} и свободная{капилярная,гравитационная}),твердая. Виды движения воды: фильтрация – гравитационное перемещение больших масс воды под влиянием сил тяжести; миграция – перемещение воды под действием других, кроме гравитационных сил – электроосмос, давление паров, замерзание.
Электроосмос(от минуса к плюсу) представляет собой движение под действием электрического поля частиц пленочной воды диффузионного слоя (от анода к катоду). Искусственный электроосмос используется в строительстве для осушения, закрепления и уплотнения глинистых грунтов.