
- •Органічна хімія (частина перша)
- •Органічна хімія
- •§1. Поняття про органічні сполуки. Спільні та відмінні ознаки неорганічних та органічних речовин Коротка історія виникнення органічної хімії
- •Спільні ознаки неорганічних та органічних речовин
- •Відмінні ознаки неорганічних та органічних речовин
- •Класифікація органічних речовин
- •Завдання для самоконтролю
- •Насичені вуглеводні Поняття та класифікація вуглеводнів
- •§2. Метан Склад і будова молекули
- •Фізичні властивості та поширення в природі
- •Хімічні властивості
- •Застосування
- •Завдання для самоконтролю
- •§3. Гомологи метану Гомологічний ряд
- •Структурні формули
- •Фізичні властивості
- •Хімічні властивості
- •Одержання насичених вуглеводнів
- •Завдання для самоконтролю
- •§4. Ізомерія насичених вуглеводнів Радикали та їх назви
- •Явище ізомерії, ізомери
- •Завдання для самоконтролю
- •§5. Теорія хімічної будови органічних речовин Виникнення теорії хімічної будови органічних речовин
- •Основні положення теорії хімічної будови органічних речовин
- •Значення теорії хімічної будови органічних речовин
- •Завдання для самоконтролю
- •§6. Визначення молекулярної формули газуватої речовини
- •Завдання для самоконтролю
- •Ненасичені вуглеводні
- •Н енасичені вуглеводні
- •§7. Етиленові вуглеводні Поняття етиленові вуглеводні. Гомологічний ряд
- •Електронна будова етилену
- •Фізичні властивості етилену
- •Хімічні властивості етилену
- •Одержання етилену
- •Застосування етилену
- •Завдання для самоконтролю
- •§ 8. Ацетиленові вуглеводні Поняття ацетиленові вуглеводні. Гомологічний ряд
- •Електронна будова ацетилену
- •Фізичні властивості ацетилену
- •Хімічні властивості ацетилену
- •Одержання ацетилену
- •Застосування ацетилену
- •Завдання для самоконтролю
- •§ 9. Дієнові вуглеводні Поняття та класифікація дієнових вуглеводнів
- •Хімічні властивості
- •Застосування
- •Завдання для самоконтролю
- •§ 10. Ізомерія ненасичених вуглеводнів
- •Завдання для самоконтролю
- •§ 11. Поняття про полімери. Поліетилен
- •С клад і будова поліетилену
- •Властивості поліетилену
- •Застосування поліетилену.
- •Завдання для самоконтролю
- •§ 12. Пластмаси
- •Завдання для самоконтролю
- •§ 13. Розв’язування розрахункових задач на виведення формули речовини за продуктами спалювання
- •Завдання для самоконтролю
- •Циклічні та ароматичні вуглеводні
- •§ 14. Циклічні сполуки
- •Гомологічний ряд та номенклатура циклічних сполук
- •Завдання для самоконтролю
- •§ 15. Бензен
- •Завдання для самоконтролю
- •§16. Поняття про хімічні засоби захисту рослин
- •Завдання для самоконтролю
- •§17. Взаємозв’язок насичених, ненасичених і ароматичних вуглеводнів
- •2 Наси чені 5
- •Завдання для самоконтролю
- •Природні джерела вуглеводнів
- •§18. Природний та супутній нафтовий гази Природний газ
- •Супутній нафтовий газ
- •Завдання для самоконтролю
- •§19. Нафта Походження нафти
- •Фізичні властивості нафти
- •Склад нафти
- •Переробка нафти
- •Крекінг нафтопродуктів
- •Детонаційна стійкість бензинів
- •Застосування нафтопродуктів
- •Завдання для самоконтролю
- •§20. Вугілля та продукти його переробки
- •Завдання для самоконтролю
Застосування нафтопродуктів
Нафта відіграє надзвичайну велику роль у житті людства, у розвитку цивілізації. Насамперед це одне із найважливіших джерел енергії, що вивільняється в результаті спалювання нафтопродуктів.
Застосування нафтопродуктів
-
Н
афта
Паливні продукти
Сировина для хімічної промисловості
Бензин (для авіа-, автомобільних двигунів)
Гас (для тракторних, ракетних двигунів)
Мазут (для парових котлів)
Етилен, пропілен (для виробництва пластмас)
Бутадієн, ізобутилен (для виробництва синтетичних канчуків, волокон)
Бензин, стирен, толуен (для виробництва пластмас, синтетичних волокон, канчуків, вибухових речовин)
Парафін (для виробництва мийних засобів, пластифікаторів, свічок)
Сировина для мікробіологічного виробництва білка
Нафтовий асфальт
У результаті хімічної переробки чорна олійна рідина перетворюється на волокна і пластмаси, на запашні й вибухові речовини, ліки і барвники. Чим глибша переробка нафти, тим більше корисних продуктів можна добути з неї.
Завдання для самоконтролю
105. Чи має нафта хімічну формулу? Чому?
106. Який хімічний склад нафти?
107. Як здійснюється перегонка нафти?
108. Назвати основні нафтові фракції.
109. Що таке крекінг нафти? Складіть рівняння реакцій розщеплення вуглеводнів С8Н18 і С12Н26 при цьому процесі.
110. Чим відрізняється термічний крекінг від каталітичного? Дайте характеристику бензинів термічного і каталітичного крекінгів.
§20. Вугілля та продукти його переробки
Якщо нафта і природний газ є основним джерелом насичених вуглеводнів, то відносно ароматичних вуглеводнів, безсумнівно, перевага належить вугіллю. Це тверде паливо посідає чільне місце в розвитку промисловості органічного синтезу як постачальник хімічної сировини. Його природні запаси набагато перевершують запаси нафти і природного газу. В Україні вугледобування зосереджено в трьох басейнах: Донецькому та Львівсько-Волинському кам’яновугільних басейнах, Дніпровському буровугільному басейні.
Вугілля – це тверда горюча копалина органічного походження, що утворилася з мертвих рослин і планктону в результаті діяльності мікроорганізмів.
Масова частка вільного вуглецю у гірській породі доволі незначна (10 % у кам’яному вугіллі, кілька відсотків у бурому вугіллі). Викопне вугілля складається переважно із складних циклічних органічних сполук, що містять елементи: Карбон, Гідроген, Оксиген, Нітроген, Сульфур, домішки неорганічних речовин (золу) та вологу. Масова частка золи та вологи може досягати 50 % і більше.
Основним способом переробки кам’яного вугілля є коксування. Даним методом із кам’яного вугілля одержують чотири основних продукти: кокс, коксовий газ, кам’яновугільна смола, аміачна вода.
Коксування (або піроліз) – це розклад органічних речовин без доступу повітря при високій температурі.
Цей процес здійснюється на коксохімічних заводах, де вугільна шихта переробляється в спеціальних камерах при температурі 1000-1200 оС. Камери відокремлені одна від одної опалювальними простінками, в каналах яких спалюють газоподібне паливо (коксовий або доменний газ) для підтримання високої температури. Кілька десятків таких камер утворюють батарею коксових печей. При нагріванні органічні речовини, що входять до складу кам’яного вугілля, зазнають складних хімічних перетворень, утворюючи леткі продукти, що збираються у газозбірнику. В камерах залишається кокс – твердий пористий матеріал, що складається з вуглецю і золи. Після завершення коксування кокс подають до башти гасіння, де його зрошують водою. Кокс використовують у металургійній промисловості як відновник для добування заліза з руд.
При охолодженні летких продуктів конденсуються кам’яновугільна смола, аміачна вода і залишаються газоподібні речовини – коксовий газ.
З кам’яновугільної смоли, вихід якої невисокий (до 4 %), фракціонуванням добувають велику кількість цінних органічних речовин: бензин і його гомологи, фенол, нафталін, антрацен та інші важливі продукти, які знаходять застосування у виробництві вітамінів, духмяних речовин, стимуляторів росту рослин, гербіцидів, барвників тощо.
Після фракціонування залишається чорна маса – пек, який використовується у шляховому будівництві, для виготовлення електродів, кровельних матеріалів, лаків (пековий лак), незамінних при фарбуванні залізних та дерев’яних конструкцій.
В аміачній воді міститься аміак та солі амонію, їх вилучають із розчину і направляють на виробництво азотних добрив.
Коксовий газ після очищення у своєму складі містить 60 % водню, 25 % метану, 5 % карбон(ІІ) оксиду, 2 % етилену, 4 % азоту, 2 % карбон(VІ) оксид, 2 % інших газів. Він використовується як паливо в промисловості, а також як хімічна сировина. З коксового газу, наприклад, виділяють водень для різних синтезів.
Таким чином, з вугілля, завдяки значній різноманітності його складу, можна добувати незрівнянно ширший асортимент продуктів, ніж з нафти і природного газу.
Не можна не відзначити і негативний вплив коксохімічного виробництва на навколишнє середовище. Так, з однієї коксової печі при звичайному завантаженні шихти в атмосферу надходить 3-5 кг вугільного пилу; 2,2 кг карбон(ІІ) оксиду; 1,6 кг пари кам’яновугільної смоли та масел; 0,57 кг вуглеводнів; під час вивантаження готового коксу – 2,8 кг пилу; 0,6 кг оксидів нітрогену.
Поглинання і випромінювання енергії карбон(VІ) оксидом та іншими речовинами спричиняє парниковий ефект. Отже, можна сказати, що ми живемо в умовах парникового ефекту, і це відповідає нормальному станові атмосфери, комфортному для нас. Проте посилення цього ефекту може мати згубні наслідки, а саме – глобальне підвищення температури й у зв’язку з цим – зміну клімату.
До цього може призвести підвищення концентрації вуглекислого газу за рахунок спалювання горючих речовин. Протягом останніх 100 років у результаті техногенної діяльності людини вміст вуглекислого газу в атмосфері невпинно зростає.
Крім парникового ефекту в результаті переробки і використання горючих корисних копалин атмосфера забруднюється шкідливими речовинами, такими як карбон(ІІ) оксид СО (від неповного згоряння пального у двигунах), сульфур(ІV) оксид SO2 (утворюється з сірки, що міститься у вугіллі і бензині), метан СН4 (витік газу), сірководень Н2S (виділяється під час перегонки нафти), оксиди нітрогену NO, NO2 (під час високотемпературного горіння) та ін.
Усі ці речовини спричиняють фотохімічний смог (від англ. smoke – курити і fog – туман), кислотні дощі тощо.
Фотохімічний смог утворюється в результаті реакцій, що відбуваються під впливом сонячного світла (фотохімічні реакції). При цьому, крім наявних у повітрі забрудників, додатково утворюються нітроген(ІV) оксид та озон. Останній реагує з вуглеводнями, що виділяються в повітря від неповного згоряння пального. У результаті утворюються сполуки, небезпечні для здоров’я людей і шкідливі для довкілля.
Фотохімічний смог уперше спостерігався в Лос-Анджелесі, де багато сонця та автомобілів.
Крім цього, під час згоряння пального утворюється дим, у якому містяться дрібні частинки вуглецю і твердих вуглеводнів, що не згоріли, а також сполуки кадмію, плюмбуму (свинцю), меркурію (ртуті) та інших елементів, надзвичайно шкідливі для здоров’я.