Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фельдман. Производные финансовые и товарные инс...doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.6 Mб
Скачать

5.5. Вычисления в нестационарных рядах чисел

Специалистами признано, что коэффициент корреляции не вызывает сомнения как статистически значимый показатель при наличии условия стационарности временных рядов, связи между которыми измеряются.

Временные ряды называются стационарными, если в них присутствуют постоянная средняя, постоянная дисперсия и ковариация зависит только от интервала времени между двумя отдельными наблюдениями.

Соответственно подлежат использованию способы, позволяющие привести нестационарные ряды к условиям стационарности. Выделяются методы интегрирования, предполагающие возможность вычисления разниц для получения временно́го стационарного процесса. Американские ученые отмечают: "Если во временно́м ряду должны

быть рассчитаны разности первые, чтобы получить стационарный ряд, то первоначальный ряд называется интегрированным рядом первого порядка... Если же требуется рассчитать вторые разности для получения стационарного ряда, то это интегрированный ряд второго порядка... Если же в ряду вообще не требуется вычислять разницы, то он называется интегрированным рядом нулевого порядка"1. Возможно также использование своеобразного варианта скользящих средних, когда искомая величина задается линейной функцией от исторических ошибок в виде разностей между прошлыми фактическими данными и прошлыми теоретическими значениями в исследуемом ряду.

В общем виде для проверки стационарности – "степени интеграции временного ряда" используется критерий Дики-Фуллера2.

Yt = αYt–1t,

(5.14)

где α – параметр;

Yt–1 – последовательные значения признака в данном ряду;

εt – величина случайных отклонений.

Проверка стационарности и интегрированности – на основе анализа корней эхого уравнения: если 1> α >0, то временной ряд стационарен (нулевого порядка); если α = 1, то уравнение получает единичный корень и имеет место интегрированный ряд первого порядка; единичный корень соответствует границе области стационарности.

Развитием данного подхода стало применение метода конинтеграции, предполагающего, что нестационарность рядов численных значений проявляется лишь на кратком отрезке времени, а в долгосрочном плане для численных рядов сопоставляемых признаков наблюдается равновесная связь.

Нестабильность в рядах финансовых показателей, изменяющаяся во времени, привела к разработке эконометрических методов предсказания будущей нестабильности на основе выявления авторегрессионной условной гетероскедастичности (методы ARCH – Autoreg-ressive Conditional Heteroscedasticity).

Это математические модели оценки колеблемости цен (курсов), построенные как статистические модели с соблюдением оценки по прошлому среднему (Mean-reverting-Prinzip).

ARCH предложена в 1982 г. (автор – Engle). Модель ARCH трансформирована в 1986 г. (автор – Bollerslev) в GARCH (обобщение ARCH). B 1991 г. новый вариант был предложен Нельсоном в виде "ex-потенциала" GARCH, и новая модель была обозначена EGARCH.

Модели являются авторегрессионными: Heteroscedasticity означает, что колеблемость рассматривается не как параметр, а как процесс, представленный (в пределах определенных границ) случайным распределением. В этих моделях допускается, что для колеблемости цен случайное распределение (в пределах, определенных моделью) является стохастическим процессом.

В модели EGARCH показатели динамики курса возводятся в квадрат (в отличие от предыдущих моделей), и сообразно с этим по-разному рассматриваются положительные и отрицательные изменения курсов. При использовании модели EGARCH выявляется, что для колеблемости цен часто более значимо снижение (падение) курсов по сравнению с повышением (ростом) их абсолютных величин.

Модели построены как итеративные вычислительные операции.

1 Уотшем Дж., Паррамоу К. Количественные методы в финансах. – С. 322.

2 Dickey D.A., Fuller W.A. Distribution of Estimators for Autocorrelated Time Serieswith a Unit Room // Jornal of American Statistical Association. – 1979. – 74. – P. 427 – 431.