Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Подготовка к ЕГЭ по информатике.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
508.7 Кб
Скачать

Ещё пример задания:

Дано: и . Какое из чисел с, записанных в двоичной системе счисления, удовлетворяет неравенству a < c < b?

1) 110110012 2) 110111002 3) 110101112 4) 110110002

Общий подход:

перевести все числа (и исходные данные, и ответы) в одну (любую!) систему счисления и сравнить.

Решение (вариант 4, через шестнадцатеричную систему):

  1. никуда переводить не нужно;

  2. (сначала перевели в двоичную систему, потом двоичную запись числа разбили на тетрады справа налево, каждую тетраду перевели в шестнадцатеричную систему; при этом тетрады можно переводить из двоичной системы в десятичную, а затем заменить все числа, большие 9, на буквы – A, B, C, D, E, F);

  3. переводим в шестнадцатеричную систему все ответы:

110110012 = 1101 10012 = D916 (разбили на тетрады справа налево, каждую тетраду перевели отдельно в десятичную систему, все числа, большие 9, заменили на буквы – A, B, C, D, E, F, как в п. 1)

11011100 2= DC16, 110101112 = D716, 110110002=D816

  1. в шестнадцатеричной системе между числами D716 и D916 может быть только D816

  2. таким образом, верный ответ – 4 .

Выводы:

  • есть несколько способов решения, «каждый выбирает для себя»;

  • наиболее сложные вычисления – при переводе всех чисел в десятичную систему, можно легко ошибиться;

  • сравнивать числа в двоичной системе сложно, также легко ошибиться;

  • видимо, в этой задаче наиболее простой вариант – использовать восьмеричную систему, нужно просто запомнить двоичные записи чисел от 0 до 7 и аккуратно все сделать;

  • в других задачах может быть так, что выгоднее переводить все в десятичную или шестнадцатеричную систему счисления.

A2 (базовый уровень, время – 2 мин)

Тема: Использование информационных моделей (таблицы, диаграммы, графики). Перебор вариантов, выбор лучшего по какому-то признаку.

Что нужно знать:

  • в принципе, особых дополнительных знаний, кроме здравого смысла и умения перебирать варианты (не пропустив ни одного!) здесь, как правило, не требуется

  • полезно знать, что такое граф (это набор вершин и соединяющих их ребер) и как он описывается в виде таблицы, хотя, как правило, все необходимые объяснения даны в формулировке задания

  • чаще всего используется взвешенный граф, где с каждым ребром связано некоторое число (вес), оно может обозначать, например, расстояние между городами или стоимость перевозки

  • рассмотрим граф (рисунок слева), в котором 5 вершин (A, B, C, D и E); он описывается таблицей, расположенной в центре; в ней, например, число 4 на пересечении строки В и столбца С означает, что, во-первых, есть ребро, соединяющее В и С, и во-вторых, вес этого ребра равен 4; пустая клетка на пересечении строки А и столбца В означает, что ребра из А в В нет

A

B

C

D

Е

A

3

1

B

4

2

C

3

4

2

D

1

Е

2

2


  • обратите внимание, что граф по заданной таблице (она еще называется весовой матрицей) может быть нарисован по-разному; например, той же таблице соответствует граф, показанный на рисунке справа от нее

  • в приведенном примере матрица симметрична относительно главной диагонали; это может означать, например, что стоимости перевозки из В в С и обратно равны (это не всегда так)

  • желательно научиться быстро (и правильно) строить граф по весовой матрице и наоборот