Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ.docx
Скачиваний:
5
Добавлен:
01.05.2025
Размер:
535.73 Кб
Скачать

Часть 1. Пусть ограниченны сверху, т.Е. Такое, что . Тогда, согласно теореме о существовании супремума мы можем утверждать, что .

Вспомним свойства  . Их было два

Но учтем теперь что  . Это значит, что    . Тогда имеем следующую цепочку неравенств

Выбрасывая лишнее получим, что     или  , что и говорит о том, что  .

Заметьте, что предел равен как раз супремуму множества  .

Часть 2. Пусть теперь неограниченна сверху. Это значит, что .

Но  . Значит,     и поэтому можно записать    . Выбрасывая в этом неравенстве  , получим окончательно

что и говорит о том, что .

Число e выражается через предел следующим образом:

Это число является трансцендентным и приблизительно равно 2,718281828... (2.7, затем два раза год рождения Л.Н.Толстого). Выполнив подстановку  , где  , получим альтернативную формулу для данного предела:

Здесь мы имеем дело со степенными выражениями, когда и основание и степень стремятся к числу a (или к бесконечности). Во многих случаях такие пределы удобно вычислять, предварительно логарифмируя функцию под знаком предела. 

  1. Понятие предельной точки множества и предельной точки последовательности. Теорема о существовании верхнего и нижнего пределов у бесконечного ограниченного множества. Теорема Больцано-Вейерштрасса об ограниченной последовательности.

1. Предельная точка множества. Точка Р называется предельной точкой множества М, если в любой окрестности точки Р имеется, по крайней мере, ещё одна точка множества М, кроме точки Р.

Оказывается, в любой окрестности предельной точки содержится бесконечное число точек множества М. Сама же предельная точка может как принадлежать, так и не принадлежать множеству М.

  1. Предельная точка числовой последовательности. Так называют (если он существует) частичный предел последовательности {xn} т.е. такое число с, что существует подпоследовательность {xnk} данной последовательности, для которой 

Теорема Больцано-Вейерштрасса

     Теорема. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

     Доказательство. Так как последовательность ограничена, то она имеет хотя бы одну предельную точку x. В таком случае из этой последовательности можно выделить подпоследовательность, сходящуюся к точке x.

     Замечание 1. Из любой ограниченной последовательности можно выделить монотонную подпоследовательность.

     В самом деле, в силу теоремы Больцано-Вейерштрасса из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность, а из этой подпоследовательности можно выделить монотонную подпоследовательность.

     Замечание 2. Пусть {xn} - ограниченная последовательность, элементы которой находятся в сегменте [ab]. Тогда предел с любой сходящейся подпоследовательности   также находится на сегменте [ab].

     Действительно, так как  , то в силу следствия 2 выполняются неравенства a ≤ c ≤ b. Это и означает, что c находится на сегменте [ab].

     Отметим, что в отдельных случаях и из неограниченной последовательности также можно выделить сходящуюся подпоследовательность. Например, последовательность 1, 1/2, 2, 1/3, ..., n, 1/(n+1), ... неограниченная, однако подпоследовательность 1/2, 1/3, ..., 1/n, ... ее элементов с четными номерами сходится. Но не из каждой неограниченной последовательности можно выделить сходящуюся подпоследовательность. Например, любая подпоследовательность неограниченной последовательности 1, 2, ..., n, ... расходится. Поэтому теорему Больцано-Вейерштрасса, вообще говоря, нельзя распространить на неограниченные последовательности.