
- •Экономика отраслевых рынков
- •1. Основные проблемы экономики отраслевых рынков (теории организации промышленности)
- •1.1. Предмет и метод экономики отраслевых рынков
- •1.2. Основные проблемы теории отраслевых рынков
- •2. Рыночные структуры и показатели рыночной власти
- •2.1. Рынок и рыночные структуры
- •Концепция строения рыночных структур по Штакельбергу
- •2.2. Барьеры входа на рынок
- •2.3. Показатели концентрации
- •2.4. Показатели монопольной власти
- •3. Альтернативные теории фирмы
- •3.1. Фирма в неоклассической теории
- •3.2. Контрактная теория фирмы
- •3.3. Теория принципала – агента
- •3.4. Альтернативные цели фирм
- •3.5. Модель самоуправляющегося предприятия
- •3.6. Организация и обработка информации
- •4.Потери общества от монополизации рынка
- •4.1. Оценка чистых потерь монополии
- •4.2. Альтернативные издержки монополизации
- •5. Экономические теории олигопольного ценообразования: объемная конкуренция
- •5.1. Общая характеристика олигополистической структуры
- •5.2. Независимое поведение: объемная конкуренция.
- •5.3. Модель дуополии Штакельберга
- •6. Экономические теории олигопольного ценообразования: ценовая конкуренция
- •Независимое поведение: ценовая конкуренция.
- •6.2. Модель Эджуорта. Модель линейного города Хотелинга
- •6.3. Методы теории игр для анализа поведения олигополии
- •7. Естественная монополия
- •7.1. Естественная монополия с позиций неоклассики
- •7.2. Ценовая дискриминация
- •1. Совершенная ценовая дискриминация (дискриминация первой степени)
- •2. Ценовая дискриминация в зависимости от объема потребления, второй степени
- •3. Ценовая дискриминация по категориям товаров, третьей степени
- •7.3. Способы регулирования естественной монополии
- •8. Исследования, инновации и патенты. Научные основы анализа инновационной деятельности
- •8.1. Экономические аспекты содержания инновационной деятельности
- •8.2. Противоречия экономической среды как источник динамизма инновационного процесса
- •8.4. Научно-технический потенциал как ресурсный фактор инновационной деятельности
- •8.5. Методологические вопросы определения инновационного потенциала национальной экономики
- •8.6. Характеристика результатов инновационной деятельности
- •8.7. Выход на рынок технологий как результат инновационной деятельности
- •8.8. Эффективность затрат на инновационную деятельность
- •9. Государственное регулирование отраслевых структур
- •9.1. Основы слияния и поглощения компаний
- •9.2. История слияний
- •9.3. Цели отраслевой политики государства
- •9.4. Антимонопольная политика государства.
- •Антимонопольная политика в сша
- •Антимонопольная политика в Западной Европе
- •Антимонопольная политика отдельных развитых стран
- •9.5. Антимонопольная политика в России
- •Качественные показатели структуры товарного рынка
- •Формы и методы вмешательства маПа
- •1. Для высококонцентрированных рынков:
- •2. Для умеренно концентрированных рынков:
- •3. Для низкоконцентрированных рынков:
- •Рекомендуемая литература
- •Оглавление
- •Калинин Дмитрий Дмитриевич экономика отраслевых рынков
6.3. Методы теории игр для анализа поведения олигополии
Для анализа олигополистического поведения используются методы теории игр. Тория игр представляет собой науку, исследующую математическими методами поведение участников в вероятностных ситуациях связанных с принятием решений.
Простейшим примером такого использования является платежная матрица. Платежная матрица представляет собой двухстороннюю таблицу, образованную множеством квадратов, каждый из которых каждый из которых представляет результат решения одного из двух продавцов.
Игры могут быть классифицированы по свойствам платежных функций. Играми с нулевой суммой (антагонистическими) называется ситуация, когда выигрыш одного из игроков равен проигрышу другого. Противоположностью играм с нулевой суммой являются игры с постоянной разностью, в которых игроки выигрывают и проигрывают одновременно, так что им выгодно действовать сообща. Игры с ненулевой суммой представляют собой промежуточный случай, где имеются конфликты и согласованные действия игроков.
По характеру предварительной договоренности игры делятся на кооперативные (когда существует сговор) и некооперативные (когда каждый за себя).
Например, уже известная нам модель Курно представляет собой некооперативную игру с ненулевой суммой.
Если фирмы будут конкурировать, то положение равновесия будет достигнуто в квадрате D, где прибыль каждого будет равна нулю. Такое решение получило название равновесия Нэша.
Если фирмы будут конкурировать, то положение равновесия будет достигнуто в квадрате D, где прибыль каждого будет равна нулю. Такое решение получило название равновесия Нэша.
Равновесием Нэша называется такое решение игры, от которого нет оснований отказываться ни одному из игроков в одиночку.
В случае конкуренции рассмотренный случай соответствует уже известной нам модели Бертрана.
продавца Цена 1-го продавца
|
10 |
5 |
10 |
А 100 100 |
В 200 - 100 |
5 |
С -100 200 |
D 0 0 |
Рисунок 6.3 – Платежная матрица
Если продавцы договариваются между собой, т.е. образуют картель, то этот сговор приносит им максимальную прибыль, которая представлена в квадрате А.
Дилемма заключенного является одним из вариантов платежной матрицы и заключается в следующем: Два заключенных поставлены перед дилеммой, либо они не сознаются в преступлении и тогда получают по одному году заключения каждый, либо сознается кто-то один, который за признание отправляется в тюрьму на несколько месяцев, но другой получает 15 лет. Если они сознаются оба, то получают оба по 7 лет. Вся проблема заключается в том, что каждый поставлен перед своей дилеммой отдельно.
Наиболее вероятное решение в этом случае может быть достигнуто в квадрате D, когда каждый получит по 7 лет. Но этот результат вероятен, если они не могут между собой договорится. Если сговор возможен, то они получают по одному году. По аналогии с продавцами, ситуация демонстрирует желание продавцов вступать в сговор на рынке для достижения наиболее благоприятного для каждого из них результата, вместо того чтобы конкурировать и снижать свои прибыли до минимума (квадрат D).
заключенный Первый заключенный
|
Не сознался |
Сознался |
Не сознался |
А 1 год 1 год |
В 2 месяца 15 лет |
Сознался |
С 15 лет 2 месяца |
D 7 лет 7 лет |
Рисунок 6.4 – Дилемма заключенного
Рассмотрим более сложную модель, в которой доступно большее число стратегий для иллюстрации равновесия Нэша.
Отсутствие стимулов к изменению своего выбора, если остальные игроки (конкуренты) придерживаются принятого решения – есть равновесие по Нэшу
Предположим, что есть два игрока А и В. Каждый игрок осуществляет выбор в зависимости от стратегии другого игрока. Предполагается, что игра является антагонистической с нулевой суммой. На рисунке ниже представлена матрица выигрышей первого игрока Н1
Матрица выигрышей
второго игрока равна
|
b1 |
b2 |
a1 |
10 |
2 |
a2 |
4 |
-6 |
a3 |
3 |
5 |
A(b1) – выбор игрока в зависимости от выбора стратегии игрока В
Игроку А доступны следующие решения в зависимости от стратегии В:
(6.24)
А игроку В следующие:
(6.25)
Таким образом, здесь нет равновесия Нэша
Рассмотрим другой числовой пример:
|
b1 |
b2 |
a1 |
10 |
2 |
a2 |
4 |
-6 |
a3 |
3 |
2 |
Игроку А доступны следующие решения в зависимости от стратегии В:
(6.26)
А игроку В следующие:
(6.27)
Таким образом равновесие Нэша будет наблюдаться тогда, когда Игроки А и В выберут стратегии a3 и b2 соответственно.