Условия равновесия системы сил.
Векторная форма .
Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю.
Алгебраическая форма.
Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы три суммы проекций всех сил на оси декартовых координат были равны нулю и три суммы моментов всех сил относительно трех осей координат также были равны нулю.
Геометрические условия равновесия.
Для равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из сил системы, был замкнутым. Это означает равенство нулю равнодействующей и главного вектора данной системы сил. Напомним, что векторная сумма - это вектор, соединяющий конец последнего из слагаемых векторов с началом первого из них. Теоретическая механика Условие равновесия произвольной плоской системы сил При равновесии главный вектор системы равен нулю.
Аналитические условия равновесия.
Очевидно [см. формулы (1.1)], что равнодействующая системы сходящихся сил и ее главный вектор будут равны нулю, если суммы проекций всех сил на координатные оси будут равны нулю, т.е.
Fkx = 0 , Fky = 0, Fkz = 0 . (1.2)
Равновесие трех непараллельных сил
Рис. 3 |
Доказательство. Пусть
из трех сил F1, F2, F3 ,
приложенных соответственно в точках
А, В и С (рис.3), непараллельными
являются F1 и F2.
Продолжим линии их действия до пересечения
в точке О и перенесем в эту точку обе
силы. Очевидно, система {F1, F2}
эквивалентна
,
а эта последняя уже имеет равнодействующую R.
Таким образом,
{F1,F2,F3} {R, F3,}. (3)
Но система двух сил находится в равновесии только в том случае, если они направлены вдоль одной прямой. Следовательно, линия действия F3 должна совпасть с линией действия R, т.е. пройти через точку О.
|
Билет 3 сучка
Момент силы относительно центра /точки/. Пара сил. Момент пары как вектор. Эквивалентность пар. Сложение пар сил. Условия равновесия системы пар.
Момент силы относительно точки
Если под действием приложенной силы твердое тело может совершать вращение вокруг некоторой точки, то для того, чтобы охарактеризовать вращательный эффект силы, необходимо ввести новое понятие - момент силы относительно точки.
Рассмотрим силу , приложенную к телу в точке А. Из некоторой точки О опустим перпендикуляр на линию действия силы .
Плечом h силы относительно точки О называется кратчайшее расстояние между этой точкой и линией действия силы.
Через силу и точку О можно провести плоскость. Сила пытается вращать тело вокруг оси, которая проходит через точку О и которая перпендикулярна плоскости в которой лежит сила. Точка О называется моментной точкой.
М
оментом
силы
относительно точки О называется вектор
,
приложенный в этой точке и равный
векторному произведению радиус-вектора
,
соединяющего эту точку с точкой
приложения силы, на вектор силы
.
Модуль вектора
равен произведению модуля силы
на ее плечо
.
Момент силы относительно точки О направлен перпендикулярно плоскости, в которой лежат сила и моментная точка (радиус-вектор), в том направлении откуда видно стремление силы вращать тело против движения часовой стрелки.
Рис. 3-4
Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.
Момент силы равен нулю, если линия действия силы проходит через моментную точку.
Если сила задана своими проекциями
на оси координат и даны координаты
точки приложения этой силы, то момент
силы относительно начала координат
вычисляется следующим образом:
Проекции момента на оси координат равны:
