
- •Б.1(1) Рефлекс как основная форма деятельности цнс. Рефлекторная дуга, (кольцо) как морфологическая основа рефлекса.
- •Б.1 (2) Гипофиз
- •Б. 2(1) Основные принципы рефлекторной теории Павлова: детерминизм, структурность, анализ, синтез.
- •Б.2(2) Передняя доля гипофиза
- •Б.3(1) Основные свойства возбудимых тканей. Классификация раздражителей.
- •Б.3 (2) Щитовидная железа
- •Б.4 Поджелудочная железа
- •Б. 5(1). Синапс. Виды синапсов. Механизм синаптического проведения.
- •Механизм передачи нервного импульса в химическом синапсе.
- •Б. 5 Надпочечники
- •Б.6 (1) Нервный центр и его свойства
- •Б.7 (1) Ретикулярная формация
- •Б.8 (1) Лимбическая система
- •Б.8(2) Гемоглобин и его соединения.
- •Б.9(1) Спиной мозг, рефлекторная и проводниковая функция.
- •Б. 9(2) Сердечный цикл и его фазы. Роль клапанного аппарата в работе сердца.
- •Б. 10 Мозжечок
- •Б.10(2) Автоматия сердца
- •Б.11(1) Задний мозг (продолговатый и варольевый мост). Функция
- •Б.11(2). Рефлекторная саморегуляция кровяного давления.
- •Б. 12(1) Средний мозг
- •Б.12(2) Нейро-гуморальная регуляция сердечной деятельности
- •Б.13(1) Таламус. Ядра таламуса. Связи с корой и базальными ганглиями. Функции.
- •Б.13(2) Артериальное давление и условие его возникновения.
- •Б.14(1) Кора мозга. Цитоархитектоника. Локализация функций. Сенсорные и моторные зоны коры.
- •Б. 14(2) Строение сосудодвигательного центра. Гуморальные факторы, влияющие на работу сдц.
- •Б.15(1) Условные рефлексы.
- •Б.16(1) Топологические особенности внд детей. Классификация типов внд.
- •Б. 16(2) Регуляция дыхания
- •Б.17 (1) Теория функциональных систем
- •Б.17(2) Объемы легочной вентиляции. Альвеолярный воздух.
- •Б. 18(1) Условия для выработки и механизм выработки условного рефлекса
- •Б. 18 (2) Автоматия дыхательного центра
- •Виды инстинктов:
- •Б.20(1) Торможение в коре головного мозга и его виды. Безусловное и условное торможение.
- •Б.20(2) Пищеварение в полости рта
- •Б.21(1) Сенсорные системы. Представление Павлова о строении сенсорных систем.
- •3. Центральный отдел анализатора - это конкретный участок коры головного мозга, который отвечает за формирование ощущения. Например:
- •Б. 21(2) Значение печени в пищеварении
- •Б.22(1) Сон, фазы сна. Механизмы сна. Изменения ээг в разные фазы сна. Нарушения.
- •Функции сна
- •Б.22(2) Фазы желудочной секреции. Регуляция секреции желудочных желёз.
- •Б. 23(1) Строение и функции зрительного анализатора. Светопреломляющий аппарат глаза. Цвето- и светоощущение.
- •Б.23(2) Пищеварение в тонком кишечнике
- •Б.24(1) Строение и функции слухового анализатора. Звуковоспринимающий аппарат уха. Теории звуковосприятия.
- •Б.24(2) Пищеварение в желудке
- •Б. 25(1) Особенности внд человека. I и II сигнальные системы. Речь
- •Б.25(2) Акт глотания. Двигательная деятельность жкт
- •Б.26(1) Строение и функции обонятельного и вкусового анализаторов.
- •Б.27(1) Память, виды, след. Нарушение памяти.
- •Б.27(2) Основные процессы мочеобразования – фильтрация, реабсорбция, секреция. Значение секреции в механизме мочеобразования.
- •Б.28(1) Строение и функции вестибулярного анализатора.
- •Лабиринт (вестибулярный аппарат)
- •3 Полукружных канала, расположенных взаимно Отолитов аппарат (состоит из 2 мешочков – овального и
- •Б.28(2) Механизмы регуляции осмотического гомеостаза: осморегулирующий рефлекс. Рецепторы, их локализация. Строение центральной части рефлекторной дуги. Роль адг в осморегуляции.
- •Б.29 (1) Нервный центр и его свойства
- •Б.29(2) Регуляция объёма жидкости. Волюморегулирующий рефлекс. Локализация рефлексов. Строение центральной части рефлекторной дуги.
- •Б. 30(1) Асимметрия мозга. Эксперименты Сперри с расщепленным мозгом.
- •Б. 30 (2) Физиология всасывания
- •Механизмы регуляции процессов всасывания
- •Б.31(1) Рефлексы положения. Статические и статокинетические рефлексы, роль лабиринтов, глаз и проприорецепторов мышц.
- •Б.32(1) Торможение в центральной нервной системе
- •Б.32(2)Обмен жиров и механизмы его регуляции. Нормы жиров. Роль жиров в организме.
- •Б.33 (1) Понятие о внд. Роль Сеченова, Павлова в развитие учения о внд
- •Б.33(2) Обмен углеводов и механизмы его регуляции. Нормы углеводов. Роль углеводов в организме.
- •Б. 34(1) Динамический стереотип. Методика выработки динамического стереотипа.
- •Б.34(2) Обмен веществ как основной признак живого. Ассимиляция и диссимиляция.
- •Б. 35(1) Теория Селье об общем адаптационном синдроме. Современный взгляд на развитие стресса. Механизм стресса и адаптация
- •Б. 35(2) Методы исследования пищеварительной системы. Роль Павлова
- •Современные методы исследования пищеварительного тракта у человек:
Б.13(2) Артериальное давление и условие его возникновения.
Артериальной давление (АД) является одним из ведущих параметров геодинамики. Давление крови зависит от количества крови, выбрасываемой сердце артерии, и от общего периферического сопротивления, которое встречает кровь, протекая по артериям, артериолам и капиллярам.
Для определения величины артериального давления у человека пользуются методом, предложенным Н.С. Коротковым. С этой целью используют сфигмоманометр Рива-Роччи. У человека обычно определяют величину артериального давления в плечевой артерии. Для этого на плечо накладывают манжету и нагнетают в неё воздух до полного сдавливания артерий, показателем чего может быть прекращение пульса. При этом с помощью фонендоскопа прослушивают тоны в сосуде.
В несдавленной артерии звуки при движении крови обычно отсутствуют. Если поднять давление в манжете выше уровня систолического артериального давления то манжета полностью перекрывает просвет артерии и кровоток в ней прекращается. Звуки при этом отсутствуют. Если теперь постепенно выпускать воздух из манжеты то в момент, когда давление в ней станет чуть ниже уровня систолического артериального, кровь при систоле преодолевает сдавленный участок и прорывается за манжету. Удар о стенку артерии порции крови, движущейся с большой скоростью и кинетической энергией через сдавленный участок, порождает звук, слышимый ниже манжеты. То давление в манжете, при котором появляются первые звуки в артерии, соответствует максимальному, или систолическому, давлению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже диастолического, кровь начинает проходить по артерии, как во время систолы, так и во время диастолы. В этот момент звук в артерии ниже манжеты исчезает. По величине давления в манжете в момент исчезновения звуков в артерии судят о величине минимального, или диастолического, давления.
Максимальное давление в плечевой артерии у взрослого здорового человека в среднем равно 105-120 мм рт. ст. Минимальное давление в плечевой артерии составляет 60-80 мм рт. ст. Повышение артериального давления приводит к развитию гипертонии, а понижение - к гипотонии.
Разность между максимальным и минимальным давление называют пульсовым давлением. Пульсовое давление колеблется от 35 до 50 мм рт. ст. Оно пропорционально количеству крови, выбрасываемому сердцем за одну систолу и в какой-то мере отражает величину ударного объёма сердца.
АД изменяется под влиянием различных факторов. Оно увеличивается при выполнении физической работы и у спортсменов во время спортивных состязаний может достигать 200 мм рт. ст. Давление крови изменяется при различных эмоциональных состояниях: страхе, гневе, испуге и др. Оно зависит также от возраста.
Б.14(1) Кора мозга. Цитоархитектоника. Локализация функций. Сенсорные и моторные зоны коры.
Кора больших полушарий головного мозга представляет собой наиболее молодое образование ЦНС. Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долями мозга.
Кора большого мозга делится на древнюю (архиокортекс), старую (палеокортекс) и новую (неокортекс). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.
Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.
Звездчатые клетки имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.
Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.
Кора большого мозга имеет шестислойное строение (рис. 11.11).
Молекулярный слой (I) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток.
Наружный зернистый слой (II) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти.
Слой пирамидных клеток (III), формируется из пирамидных клеток малой величины и вместе со II слоем обеспечивает корко-корковые связи различных извилин мозга.
Внутренний зернистый слой (IV) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов анализаторов.
Внутренний пирамидный слой (V) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.
Слой полиморфных клеток (VI) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортико-таламические пути.
Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Выделяют в мозге человека 53 цитоархитектонических поля. Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.
Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей: 1. Проекционный путь. Он связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути. 2. Комиссуралъный путь. Его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела.
3. Ассоциативный путь - связывает участки коры одного и того же полушария.
В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны.
1.Сенсорные зоны коры больших полушарий. Это участки коры, в которых располагаются центральные отделы анализаторов: Зрительная зона - затылочная доля коры больших полушарий; Слуховая зона - височная доля коры больших полушарий; Зона вкусовых ощущений - теменная доля коры больших полушарий; Зона обонятельных ощущений - гиппокамп и височная доля коры больших полушарий; Соматосенсорная зона - находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов, и импульсы от температурных, тактильных и др. рецепторов кожи.
2.Моторные зоны коры больших полушарий. Это участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При её поражении наблюдаются серьезные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела.
3.Ассоциативные зоны. Это отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативные зоны. Особенностью этой зоны является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.
Речевая функция связана с сенсорными и двигательными зонами.
Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция. При этом больной понимает речь, но сам говорить не может.
Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота. При этом больной может говорить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов, нарушается письменная речь.
Речевые функции, связанные с письменной речью - чтение, письмо - регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной доли коры головного мозга. Его поражение приводит к невозможности чтения и письма.
В височной доле находится центр, отвечающий за запоминание слов. Больной с поражением этого участка не помнит названия предметов, им необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной глядя на галстук, говорит: «это то, что одевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».
Функции лобной доли:
Управление врожденными поведенческими реакциями при помощи накопленного опыта.
Согласование внешних и внутренних мотиваций поведения;
Разработка стратегии поведения и программы действия.
Мыслительные особенности личности.