
- •Экзаменационные ответы (физколлоидная химия)
- •Формулировки первого закона термодинамики:
- •Уравнение для бесконечно малых элементарных процессов:
- •Значение первого начала (закона) термодинамики
- •Закон Гесса:
- •Следствия из закона Гесса:
- •Зависимость теплового эффекта химической реакции от температуры:
- •Закон (уравнения) Кирхгофа и его решение:
- •Решение интегральной формы уравнения Кирхгофа. Рассматривают 2 приближения:
- •1 Приближение
- •2 Приближение
- •О бозначение стандартных теплот образования
- •О бозначение стандартных теплот сгорания
- •Классификация термодинамических параметров состояния системы:
- •Сходные свойства внутренней энергии и энтальпии
- •Доказательство внутренней энергии – функции состояния
- •Сущность теплоты
- •Сущность работы. 3 ситуационных случая:
- •Сходные свойства теплоты и работы
- •Различие теплоты и работы
- •Отличие термодинамической обратимости от химической
- •Энтропийная формулировка второго начала (закона возрастания энтропии) термодинамики
- •Следствие закона возрастания энтропии
- •Вычисление энтропии при различных процессах
- •1 Приближение
- •2 Приближение
- •Третий закон (начало) термодинамики:
- •Объединённое первое и второе начало термодинамики
- •Энтропийный принцип для специальных процессов
- •Сходные свойства энергии Гельмгольца и Гиббса
- •Критерии энергии Гельмгольца, характеризующие направленность самопроизвольных процессов
- •Критерии энергии Гиббса, характеризующие направленность самопроизвольных процессов
- •Критерии энергии Гиббса при протекании химической реакции:
- •Химимческий потенциал индивидуального газа в индивидуальном состоянии
- •Химимческий потенциал реального газа в индивидуальном состоянии
- •Химический потенциал реального раствора
- •Влияние концентрации
- •Константа равновесия для растворов
- •Анализ изобары Вант-Гоффа. Зависимость константы химического равновесия от температуры
- •Уравнение изобары и изохоры Вант-Гоффа и их решения. Следствия, вытекающие из этих уравнений. Принцип Ле-Шателье.
- •Уравнение изобары и изохоры Вант – Гоффа и их решения
- •Принцип Ле-Шателье
- •Вычисление константы химического равновесия по стандартным термодинамическим величинам.
- •1 Приближение
- •2 Приближение
- •В основе анализа диаграмм состояния лежат два общих положения:
- •Правило фаз Гиббса (формулировка и математическое выражение)
- •Применение диаграмм состояния и правила фаз Гиббса к однокомпонентным системам
- •3 Возможных случая:
- •Диаграмма состояния серы
- •4 Фазы (агрегатных состояния) у серы:
- •1 ) Твёрдое состояние (две модификации):
- •Разделение фаз шестью линиями – фазовыми равновесиями:
- •3 Возможных случая:
- •Фазовое равновесие в однокомпонентной системе на примере диаграммы состояния воды и серы. Диаграммы состояния воды
- •3 Возможных случая:
- •Определение наклона кривых по уравнению Клапейрона
- •Диаграмма состояния серы
- •4 Фазы (агрегатных состояния) у серы:
- •1 ) Твёрдое состояние (две модификации):
- •Разделение фаз шестью линиями – фазовыми равновесиями: Уравнение Клапейрона – Клаузиуса и его решение
- •Условная классификация твёрдых веществ по растворимости:
- •Зависимость растворимости веществ от температуры и давления: Растворимость твёрдых веществ:
- •Растворимость жидких веществ:
- •Растворимость газообразных веществ:
- •Уравнение состояния идеальных газов для разбавленных растворов.
- •Законы Рауля Первая форма
- •Первая форма закона Рауля, применимое к растворителю и растворённому веществу:
- •Закон Рауля, применимый к растворителю:
- •Вторая форма закона Рауля – понижение давления насыщенного пара растворителя над раствором:
- •Вывод по обеим формам закона Рауля:
- •1. Понижение давления насыщенного пара растворителя над раствором – вторая форма закона Рауля
- •2. Повышение температуры кипения растворов – разность температур кипения растворов и растворителей
- •Понижение температуры замерзания растворов – разность температур замерзания растворителей и растворов
- •Уравнение состояния идеальных газов для разбавленных растворов.
- •Физико-химический метод анализа
- •Принцип построения диаграммы состояния
- •Кривые охлаждения и диаграмма состояния
- •Диаграмма плавкости двухкомпонентных систем, нерастворимых в твёрдом состоянии
- •Поля диаграммы, образованные линиями ликвидуса и солидуса
- •Определение состояния системы при изменении её параметров
- •Система, заданная точкой а Система, заданная точкой b
- •Диграммы плавкости двухкомпонентных систем с неограниченной растворимостью в жидком и твердом состоянии
- •Процесс охлаждения расплава
- •Если система задана фигуративной точкой а, то:
- •Значение фазовых диаграмм для фармации
- •Равновесие жидкость-пар в двухкомпонентных растворах. Первый и второй законы Коновалова. Основы дробной и непрерывной перегонок.
- •При давлении р2
- •Первый закон Коновалова:
- •Обоснование математических неравенств составов равновесных фаз
- •Основы непрерывной (простой) перегонки
- •Основы дробной (фракционной) перегонки
- •Ректификация
- •Влияние температуры на растворимость
- •По характеру зависимости взаимной растворимости от температуры ограниченно растворимые жидкости делят на 4 типа:
- •Ограниченно растворимые жидкости с верхней критической температурой растворения (фенол – вода, анилин – вода).
- •Процессы охлаждения
- •Ограниченно растворимые жидкости с нижней критической температурой растворения (триэтиламин — вода, диэтиламин — вода)
- •Ограниченно растворимые жидкости с верхней и нижней критическими температурами растворения (никотин — вода, глицерин — гваякол)
- •Взаимно нерастворимые жидкости Диаграмма состояния взаимно нерастворимых жидкостей. Зависимость давления пара этих жидкостей от температуры
- •Расчёт давления пара каждой жидкости над смесью в идеальной системе по закону Рауля
- •Расчёт общего давления по закону Дальтона
- •Перегонка с водяным паром
- •Связь давления и количества каждой жидкости в конденсате
- •Можно рассчитать массу каждой жидкости в конденсате по формулам, полученным в результате применения уравнения Менделеева – Клапейрона
- •Отношение полученных последних выражений
- •Закон распределения веществ между двумя несмешивающимися жидкостями. Коэффициент распределения. Принцип получения настоек и отваров. Экстракция.
- •Закон распределения
- •Коэффициент распределения равен отношению равновесной концентрации распределяемого вещества в органической фазе к его концентрации в водной фазе:
- •Установление сложного равновесия между простыми и ассоциированными молекулами или ионами в пределах каждой фазы при диссоциации и ассоциации распределяемого вещества
- •Принцип получения настоек и отваров
- •1. Понижение давления насыщенного пара растворителя над раствором – вторая форма закона Рауля
- •2. Повышение температуры кипения растворов – разность температур кипения растворов и растворителей
- •3. Понижение температуры замерзания растворов – разность температур замерзания растворителей и растворов
- •Уравнение состояния идеальных газов для разбавленных растворов.
- •Расчёт термодинамической константы диссоциации
- •Расчёт активности
- •Расчёт коэффициента активности в разбавленном растворе
- •Особенности свойств сильных электролитов
- •Теория Дебая и Хюккеля
- •Расчет коэффициента активности Вычисление коэффициента активности через толщину ионной атмосферы
- •3 Приближения теории Дебая – Хюккеля для расчёта коэффициента активности: Первое приближение – предельный закон Дебая
- •Второе приближение
- •Коэффициент в рассчитывают по уравнению
- •Третее приближение
- •Вычисление среднего ионного моляльного коэффициента активности для 1,1-валентного электролита
- •Вычисление среднего ионного моляльного коэффициента
- •Зависимость логарифма среднеионного коэффициента активности от корня квадратного из ионной силы раствора
- •Упрощающие допущения заключаются в том, что:
- •Расчёт активности
- •Расчет коэффициента активности Вычисление коэффициента активности через толщину ионной атмосферы
- •3 Приближения теории Дебая – Хюккеля для расчёта коэффициента активности: Предельный закон Дебая – первое приближение
- •Второе приближение
- •Коэффициент в рассчитывают по уравнению
- •Третее приближение
- •Вычисление среднего ионного моляльного коэффициента активности для 1,1-валентного электролита Вычисление среднего ионного моляльного коэффициента
- •Правило ионной силы Льюиса
- •Виды электропроводимости:
- •Величина тока, создаваемая катионами и анионами
- •Суммарный ток равен сумме токов, создаваемых катионами и анионами
- •Зависимость удельной электропроводимости растворов электролитов от концентрации
- •Расчёт электропроводимости для слабых электролитов, определяемой степенью диссоциации
- •Электрическую проводимость растворов см. Вопрос № 31 !!! Кондуктометрия как метод анализа
- •Виды кондуктометрического метода анализа:
- •Классификация буферных систем:
- •Механизм действия буферных растворов на примерах ацетатного, фосфатного и гидрокарбонатно-гемоглобинового буферов
- •Уравнение Гендерсона –Гассельбаха
- •Гидрокарбонатно-гемоглобиновая система
- •Диссоциация компонентов
- •Факторы, влияющие на буферную ёмкость:
- •Значение буферных систем для химии и биологии
- •Классификация электродов:
- •Классификация обратимых электродов:
- •По свойствам веществ, участвующих в потенциалопределяющих процессах и по устройству:
- •По принципу применения:
- •Три механизма возникновения электрического заряда на поверхности раздела фаз:
- •Устройство гальванического элемента:
- •Теории возникновения скачка потенциала на границе металл — раствор Три положения осмотической теории в. Нернста:
- •Три случая, характеризующие природу металла и состав раствора:
- •Гальвани-потенциал отождествляется с электродным потенциалом
- •Сольватационная теория (л. В. Писаржевского) электродного потенциала — главные процессы, протекающие при возникновении электродного потенциала:
- •Развитие сольватационной теории возникновения электродного потенциала н. А. Изгарышевым
- •Результаты исследования и выводы у. Герни по развитию сольватационной теории возникновения электродного потенциала
- •Объединённые результаты исследований в. Нернста, н. А. Изгарышева и у. Герни — сольватационная теория возникновения электродного потенциала
- •Вычисление работы (энергии) выхода иона из металла ( Uм ) и энергии его сольватации ( Uсол )
- •3 Ситуационных случая:
- •Выражение химического потенциала иона в растворе
- •Уравнение Нернста для электродного потенциала с
- •Устройство водородного электрода
- •Механизм возникновения потенциала на водородном электроде
- •Анионов хлорида серебра в насыщенном растворе
- •Выражение для потенциала каломельного электрода и его физический смысл
- •Электродная схема и уравнение потенциалопределяющего процесса
- •Две разновидности окислительно-восстановительных электродов:
- •Электроды, потенциал которых не зависит от активности ионов водорода
- •Электроды, потенциал которых зависит от активности ионов водорода
- •Применение стеклянного электрода
- •Количественная характеристика величины скачка потенциала на границе фаз стекло – раствор:
- •Окончательное выражение для потенциала стеклянного электрода
- •Кривые потенциометрического титрования.
- •Определение объема титранта расчётным путем
- •Кислотно-основное титрование
- •Зависимость скорости и константы скорости реакций от различных факторов
- •Различают:
- •Вопрос № 39
- •Реакции второго порядка
- •Различают:
- •Методы определения порядков реакции:
- •Интегральные методы
- •3) По периоду полураспада
- •Дифференциальные методы Вант-Гоффа Зависимость скорости химической реакции n – ного порядка от концентрации
- •Метод заключается в:
- •Применение дифференциального метода в двух вариантах:
- •Зависимость скорости химической реакции от температуры
- •Уравнение Аррениуса в интегральной форме
- •Теория переходного состояния или активированного комплекса
- •Две задачи в теории абсолютных скоростей:
- •Уравнение поверхности потенциальной энергии
- •Уравнение константы скорости реакций
- •Деление реакций на 3 группы по значению δs≠ :
Значение буферных систем для химии и биологии
Буферные системы имеют огромное значение для химии и биологии. С помощью буферных систем можно регулировать рН кислотности и щёлочности среды при проведении количественного анализа лекарственных веществ в лекарственных формах, токсических и других веществ в исследуемой биологической жидкости. Регуляция рН кислотности и щёлочности среды в организме живых существ осуществляется ферментами, поддерживающие постоянство внутренней среды организма. Главными буферными системами в организме являются фосфатная, гидрокарбонатная, белковая и гемоглобиновая. Действие всех буферных систем взаимосвязано. Поступившие извне или образовавшиеся в процессе обмена веществ катионы водорода связываются в слабо диссоциируемые соединения одним из компонентов буферных систем. При некоторых заболеваниях может происходить изменение значения рН крови. Смещение значения рН крови в кислую область от нормальной величины константы – ацидоз, в щелочную область – алкалоз. Ацидоз возникает при тяжелых формах сахарного диабета, длительной физической работе и при воспалительных процессах. При тяжелой почечной или печеночной недостаточности или при нарушении дыхания может возникнуть алкалоз. Алкалоз возникает при повышенном выделении углекислого газа с выдыхаемым воздухом с последующим снижением парциального давления углекислого газа, симптомы: лихорадка, энцефалит, психические возбуждения; а также чрезмерной потерей желудочного сока, симптомы: частая рвота, повышенное выделение протонов водорода, гипокалиемия. Ацетатный буфер используют при отделении ионов бария от ионов кальция и стронция с помощью дихромат-ионов, а также при определении катионов никеля с помощью диметилглиоксима (реактива Чугаева).
ВОПРОС № 34
Электрод – электропроводящая фаза (металл или полупроводник), контактирующий с ионным проводником (электролитом).
Классификация электродов:
Необратимые электроды – электроды, на которых продолжаются процессы после размыкания цепи, а при изменении направления электрического тока другие реакции не обратные друг другу.
Обратимые электроды – электроды, в которых после размыкания цепи устанавливается равновесие.
Условие термодинамической обратимости электрода – протекание бесконечно малого тока через электрод. Реакцию можно прекратить подсоединив к электроду внешний источник тока с одинаковым значением ЭДС, но противоположного направления.
Классификация обратимых электродов:
По свойствам веществ, участвующих в потенциалопределяющих процессах и по устройству:
Электроды первого рода – электроды, состоящие из металлов и неметаллов, которые погружены в раствор, содержащий ионы этих же металлов и неметаллов с различной концентрацией
Металлические электроды, обратимые относительно катионов
Примеры металлических электродов
Определение электродного потенциала металлов
Электродный потенциал зависит только от концентрации (активности) одного вида ионов металла.
Металлоидные электроды, обратимые относительно анионов
Пример, селеновый электрод
Определение металлоидного электродного потенциала
Активность окисленной формы аниона принимают за единицу.
Газовые электроды – электроды обратимы по отношению к катиону или к аниону. Электроды создают по схеме (металл) газ/раствор. Металл в газовых электродах необходим для переноса электронов и создания поверхности, на которой протекает реакция. Металл должен быть инертным по отношению к веществам, находящимся в растворе.
Представитель – водородный электрод
Электроды второго рода – электроды, в которых металл покрыт слоем его малорастворимой соли, погружены в раствор легко растворимой соли, содержащая анион.
Условное обозначение М │ МА │ Аz-
Представители – каломельный и хлорсеребряный электроды
Окислительно-восстановительные электроды – электроды, металл которых не принимает участия в окислительно-восстановительных реакциях, а является переносчиком электронов, процесс окисления – восстановления протекает между ионами в растворе
Условное обозначение
Представитель – хингидронный электрод
Ионнообменные электроды – электроды, состоящие из двух фаз: ионита и раствора, потенциал на границе раздела фаз возникает за счёт ионообменного процесса, в результате которого поверхности ионита и раствора приобретают электрические заряды противоположного знака. Иониты обладают повышенной избирательной способностью по отношению к определённому виду ионов, находящихся в растворе – ионселективные электроды. Ионселективные электроды могут быть обратимы относительно катионов натрия, калия, кальция.
Представитель – стеклянный электрод