
- •Часть I. Основы гидравлики
- •1 Общие положения
- •1.1 Предмет гидравлики, основные понятия и определения
- •1.2 Силы, действующие в жидкости. Давление
- •1.3 Основные физические свойства жидкостей и газов
- •1.3.1 Плотность и удельный вес
- •1.3.2 Вязкость
- •1.3.3 Сжимаемость
- •1.3.4 Температурное расширение
- •1.3.5 Испаряемость
- •1.3.6 Растворимость газов
- •2 Гидростатика
- •2.1 Свойства гидростатического давления. Основное уравнение гидростатики
- •2.2 Устройство и приборы для измерения давления
- •2.3 Сила давления на плоскую стенку
- •Или окончательно получим
- •2.4 Сила давления на криволинейные стенки. Плавание тел
- •2.5 Относительный покой жидкости
- •3 Кинематика и динамика жидкости
- •3.1 Основные понятия и определения
- •3.2 Расход. Уравнение расхода
- •3.3 Уравнение Бернулли для элементарной струйки идеальной жидкости
- •3.4 Геометрическая и энергетическая иллюстрация уравнения Бернулли
- •3.5 Уравнение Бернулли для потока реальной жидкости
- •3.6 Примеры использования уравнения Бернулли в технике
- •3.7 Режимы течения жидкости в трубах
- •3.8 Теория ламинарного течения в круглых трубах
- •Подставляя значение τ в предыдущее уравнение, получаем
- •3.9 Турбулентное течение
- •3.9.1 Основные сведения
- •3.9.2 Определение коэффициента потерь на трение. Исследования и. Никурадзе
- •3.9.3 Практические способы определения коэффициента гидравлического трения λ для напорных технических труб
- •3.10 Местные гидравлические сопротивления
- •3.11 Местные сопротивления при больших и малых числах Рейнольдса. Метод эквивалентной длины
- •4 Истечение жидкости через отверстия и насадки
- •4.1 Истечение через отверстие в тонкой стенке
- •4.2 Истечение под уровень
- •4.3 Истечение через насадки
- •4.4 Истечение жидкости через проходные сечения в гидравлических устройствах
- •5 Гидравлический расчет трубопроводов
- •5.1 Простой трубопровод постоянного сечения
- •5.2. Построение характеристики потребного напора простого трубопровода
- •5.3 Соединения простых трубопроводов. Аналитические и графические способы расчета
- •5.4 Трубопровод с насосной подачей
- •7.5. Гидравлический удар в трубопроводе
- •6 Особые случаи течения жидкости
- •6.1 Течение капельной жидкости с кавитацией
- •6.2 Течение с облитерацией
- •6.3 Гидравлический удар в трубопроводе
ВВЕДЕНИЕ
Гидравлика относится к числу древнейших наук. Первые гидравлические системы водоснабжения и ирригации были известны человеку еще задолго до нашей эры. Уже в Древнем Египте, Индии и Китае, странах Ближнего Востока умели строить на реках плотины и водяные мельницы, оросительные системы на рисовых полях, в которых использовались водоподъемные машины. В Риме за шесть столетий до нашей эры был построен водопровод, что свидетельствует о высокой технической культуре того времени. В III веке до нашей эры Архимед изобрел машину для подъема воды, названную «архимедовым винтом» и являющуюся прообразом современных гидравлических насосов.
По мере развития науки и техники совершенствовались гидравлические и пневматические системы, и существенно расширялась сфера их практического применения. В настоящее время гидравлические машины, гидро- и пневмоприводы широко используют в водоснабжении и мелиорации, машиностроении и металлургии, на всех видах транспорта и в строительстве. Важную роль в развитии современной техники играют гидравлические и пневматические приводы как основное средство механизации и автоматизации технологических процессов и процессов управления различными объектами. В качестве исполнительных устройств такие приводы применяют в станках и автоматических линиях, роботах и манипуляторах, системах управления автомобилем, самолетом и т.п.
Очевидно, что техническое совершенствование гидравлических и пневматических систем не могло происходить без фундаментальных научных разработок, начало которым положил трактат Архимеда «О плавании тел».
В XV—XVII веках в трудах Леонардо да Винчи, Г. Галилея, И. Ньютона были сформулированы отдельные законы равновесия и движения жидкости, а в середине XVIII века Д. Бернулли и Л. Эйлер заложили теоретические основы гидромеханики как науки.
В XIX—XX веках гидромеханика получила дальнейшее развитие в трудах Дж. Г. Стокса, О. Рейнольдса, Н. Е. Жуковского, Н. П. Петрова, Л. Прандтля и других ученых. Этот период характеризуется бурным развитием науки и техники, поэтому в трудах по гидромеханике большое внимание уделяется вопросам, представляющим практический интерес. Формируется раздел гидромеханики, рассматривающий законы равновесия и движения жидкости в открытых и закрытых руслах и способы их применения для решения технических задач. Этот раздел гидромеханики получил название «гидравлика». Именно гидравлика как прикладная наука совместно с газовой динамикой, изучающей законы движения газа, является научной основой для расчета и проектирования современных гидравлических и пневматических систем и их элементов.
В настоящем учебном пособии рассматриваются основные законы гидравлики, и описывается работа различных гидравлических и пневматических устройств, принцип действия которых основан на этих законах. Освещаются методы построения гидравлических и пневматических систем на базе этих устройств. Даются методы расчета основных параметров трубопроводов, гидравлических и пневматических машин, элементов управления и контроля гидравлических и пневматических приводов.
Часть I. Основы гидравлики
1 Общие положения
1.1 Предмет гидравлики, основные понятия и определения
Раздел механики, в котором изучаются равновесие и движение жидкостей, а также взаимодействие между жидкостью и обтекаемыми ею поверхностями или телами, называется «механика жидкости», или «гидромеханика».
Термин «жидкость» в гидромеханике обладает более широким значением, чем это принято в современном русском языке. В понятие «жидкость» включают физические тела, обладающие текучестью, то есть способностью изменять свою форму под воздействием сколь угодно малых сил. Поэтому под этим термином подразумеваются не только обычные (капельные) жидкости, но и газы. Несмотря на их различие, законы движения капельных жидкостей и газов при определенных условиях можно считать одинаковыми. Основным из этих условий является небольшое значение скорости движения по сравнению со скоростью звука.
Одним из прикладных разделов гидромеханики является гидравлика, которая решает определенный круг технических задач и вопросов. Прикладной характер этого раздела подчеркивает само слово «гидравлика», которое образовано из греческих слов hydor — вода и aulos — трубка. Поэтому гидравлика рассматривается как наука о законах равновесия и движения жидкостей и о способах приложения этих законов для решения практических задач.
Гидравлика изучает в первую очередь течения жидкостей в различных руслах, т.е. потоки, ограниченные стенками. В понятие «русло» мы будем включать все устройства, ограничивающие поток, в том числе трубопроводы, проточные части насосов, зазоры и другие элементы гидравлических систем. Таким образом, в гидравлике изучаются в основном внутренние течения и решаются «внутренние» задачи.
Внешние течения, связанные с обтеканием движущихся тел воздушной или жидкой средой, рассматриваются в аэрогидромеханике, которая в настоящее время получила также значительное развитие в связи с потребностями авиации, авто- и судостроения. Аэрогидромеханика, являющаяся весьма обширной областью исследований и практического применения, не менее важна, однако в данном учебном пособии она не рассматривается.
Современная гидравлика является результатом развития двух методов исследования и решения технических задач.
Первый из этих методов — теоретический, основанный на использовании законов механики. Развитие его привело к созданию математического описания практически всех основных процессов, происходящих в движущейся жидкости. Однако использование этих математических моделей не всегда позволяет решать практические задачи. Это связано, с одной стороны, со сложностью используемых математических зависимостей, а с другой стороны, — с необходимостью учета влияния большого числа конструктивных факторов.
Второй метод — экспериментальный, учитывающий практическую деятельность людей, в результате которой накоплен значительный опыт по созданию гидравлических систем.
Современные способы решения прикладных задач, применяемые в гидравлике, представляют собой комбинацию отмеченных методов. Суть их заключается в следующем: сначала исследуемое явление упрощается (вводятся разумные допущения), а затем к нему применяют теоретические методы гидромеханики и на их основе получают расчетные формулы. По формулам проводят необходимые вычисления, и полученные результаты сравнивают с опытными данными. На основе сравнения расчетные зависимости рекомендуют к применению на практике или вносят в них необходимые коррективы.
Таким образом, методы, применяемые в гидравлике, являются сочетанием аналитических и экспериментальных способов исследования.