Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
777.doc
Скачиваний:
0
Добавлен:
23.02.2020
Размер:
777.22 Кб
Скачать

1.Закон Кулона определяет силы взаимодействия двух неподвижных точечных зарядов и, расположенных на расстоянии r12 друг от друга. Здесь — сила, действующая на первый заряд со стороны второго, — сила, действующая на второй заряд со стороны первого (эти силы удовлетворяют третьему закону Ньютона, т.е. являются силами действия и противодействия). Величины сил пропорциональны величинам зарядов  и  и обратно пропорциональны — квадрату расстояния между ними. Силы всегда направлены вдоль прямой, соединяющей эти заряды. Они являются силами притяжения, если знаки зарядов противоположны и силами отталкивания, если знаки зарядов одинаковы (см. рис.1). Свойства сил взаимодействия точечных зарядов отражает векторная форма закона Кулона: 

F = k*r1/r2

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы   действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда  :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора   (вообще говоря - разное[3] в разных точках пространства), таким образом,   - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к.   может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

2. . Принцип суперпозиции полей, также называемый принципом наложения, является условностью. Согласно которой некоторый сложный процесс взаимодействия между определённым числом объектов можно представить в виде суммы взаимодействий между отдельными объектами. Принцип суперпозиции применим лишь к тем системам,  которые описываются линейными уравнениями.  К примеру, электромагнитная волна распространяется в вакууме. Свойства вакуума не меняются при воздействии на него волны. И все эффекты, которые возникают при распространении этой волны, в случае если она негармоническая можно представить в виде суммы эффектов создаваемых отдельными гармониками. Этот же принцип применим и к полю создаваемому скоплением зарядов. Суммарное поле можно разделить на отдельные поля, которые создаются каждым зарядом в отдельности. И наоборот общее поле будет состоять из суммы полей отдельных зарядов.  Графически принцип суперпозиции полей можно представить в виде геометрической суммы векторов силы, которые действуют на пробный заряд, помещённый в поле точечных электрических зарядов.

Рисунок 1 — графическое представление принципа суперпозиции

  Если поле создано простейшей совокупностью зарядов. Которая состоит из положительного и отрицательного зарядом находящихся на некотором расстоянии друг от друга. То результирующее поле в точке наблюдения находится, с помощью правила параллелограмма.

Рисунок  2 — иллюстрация к правилу параллелограмма

  В случае если поле создается заряженным телом, имеющим протяжённые линейные размеры. То его необходимо мысленно разбить на небольшие участки, действие которых можно считать аналогичным действию точечных зарядов. И провести геометрическое суммирование полей этих отдельных участков. Таким образом, применив принцип суперпозиции полей к массивному телу.  Принцип суперпозиции не является фундаментальным законом или постулатом. Он всего лишь вытекает из других принципов, например в электростатике основой для принципа суперпозиции являются уравнения Максвелла. Так как они линейны для вакуума это и дает основу для применения этого принципа.  Но скажем если рассматривать в качестве среды не вакуум. А скажем ферромагнетик, то линейность в данной среде отсутствует. Так как намагниченность ферромагнетика определяется кривой намагниченности. Которая конечно и имеет некоторый участок обладающий линейностью, но в целом имеет и участок насыщения с резко выраженной нелинейностью. И принцип суперпозиции в данном случае не применим. Также нельзя применять принцип суперпозиции и к взаимодействию атомов и молекул между собой. Например, если взять два атома, у которых электроны находятся во взаимодействии. И поднести к ним третий такой же атом. Часть электронов от первых двух атомов притянется и вступит во взаимодействие с третьим атомом. То есть первоначальное распределение энергии в системе измениться. Изначальная сила взаимодействия между электронами и ядрами первых двух атомов уменьшится. То есть третий атом влияет не только на электроны, но и на ядра атомов.

3. Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристикаэлектростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный положительный пробныйзаряд, помещённый в данную точку поля. Единицей измерения потенциала в Международной системе единиц (СИ) является вольт(русское обозначение: В; международное: V), 1 В = 1 Дж/Кл (подробнее о единицах измерения — см. ниже).

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля   и потенциал   связаны соотношением[1]

или обратно[2]:

4. Проводник в электрическом поле

Электрическое поле — один из двух компонентов электромагнитного поля, представляющий собой векторное поле[1], существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающий при изменении магнитного поля(например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2].

Если незаряженный изолированный проводник внести в электрическое поле, то в результате действия электрических сил поля в проводнике происходит разделение электрических зарядов. На фиг. 12 показан положительно заряженный металлический шар А, в поле которого внесен проводник Б. Свободные электроны проводника придут в движение в направлении, противоположном направлению электрического поля. В результате на конце проводника, обращенном к заряженному шару, окажется избыток электронов, обусловливающий отрицательный заряд этого конца, а на другом конце проводника окажется недостаток электронов, обусловливающий положительный заряд этой части проводника.

Разделение зарядов на проводнике под влиянием заряженного тела называется электризацией через влияние или электростатической индукцией, а заряды на проводнике — индуцированными зарядами. По мере приближения проводника Б к заряженному шару А количество индуцированных зарядов на проводнике увеличивается. Электрическое поле заряженного шара А изменяется, как только в нем окажется проводник Б. Электрические силовые линии шара А, расходившиеся ранее равномерно и радиально, теперь изогнутся в сторону проводника. Так как началами и концами электрических силовых линий являются электрические заряды, лежащие на поверхности проводников, то, начинаясь у поверхности с положительными зарядами, силовая линия кончается у поверхности с отрицательными зарядами. Внутри проводника электрическое поле существовать не может. В противном случае между отдельными точками проводника существовала бы разность потенциалов, в проводнике происходило бы движение зарядов (ток проводимости) до тех пор, пока вследствие перераспределения зарядов потенциалы всех точек проводника не стали бы равными. Этим пользуются, когда хотят оградить проводник от влияния внешних электрических полей. Для этого проводник окружают другим проводником, выполненным в виде сплошной металлической поверхности или проволочной сетки с мелкими отверстиями. Индуцированные заряды, образовавшиеся на проводнике в результате влияния на него заряженного поля, можно отделить один от другого, если разломить проводник пополам. Проводник, попав в электрическое поле заряженного металлического тела, в свою очередь оказывает влияние на распределение частиц заряда на этом теле, заставляя большую часть заряда наэлектризованного тела скапливаться на стороне, обращенной к проводнику. Если проводник вынести из электрического поля, то индуцированные заряды на нем пропадают и проводник снова становится незаряженным.

5. Диэлектриками называются вещества, которые в обычных условиях практически не проводят электрический ток, их удельное сопротивление в  раз больше, чем у металлов. Согласно представлениям классической физики, в диэлектриках, в отличие от проводников, нет свободных носителей заряда, которые могли бы под действием электрического поля создавать ток проводимости. К диэлектрикам относятся все газы; некоторые жидкости (дистиллированная вода, масла, бензол); твердые тела (стекло, фарфор, слюда). Термины "диэлектрик" и "диэлектрическая постоянная" были введены в науку в 1837 г. M. Фарадеем. Диэлектрики, как и любые вещества, состоят из атомов и молекул. В целом молекулы нейтральны, тем не менее, они взаимодействуют с электрическим полем. Например, в случае, когда симметрия молекулы отлична от сферической, ее можно представить в виде электрического диполяЭлектрический дипольный момент молекулы  , где q - суммарный заряд ядер или электронов; l - вектор, представляющий собой плечо эквивалентного диполя.

Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

Напряженность электрического поля в диэлектрике

Рассмотрим диэлектрическую пластинку, заполняющую плоский конденсатор (рис.14.5) и находящуюся, следовательно, в практически однородном внешнем поле   .

В результате поляризации на гранях диэлектрика, обращенных к пластинам конденсатора, концы молекулярных диполей окажутся нескомпенсированными соседними диполями. Поэтому на правой грани, обращенной к отрицательной пластине конденсатора, окажется избыток положительного заряда с некоторой поверхностной плотностью   . На противоположной стороне диэлектрика   . Эти так называемые поляризационные, или связанные заряды не могут быть переданы соприкосновением другому телу без разрушения молекул диэлектрика, т.к. они обусловлены самими поляризованными молекулами. Возникновение поляризованных зарядов приводит к возникновению дополнительного электрического поля  , направленного против внешнего поля   . Результирующее электрическое поле Е внутри диэлектрика равно

(14.2)

Для определения   применим формулу вычисления напряженности   конденсатора

(14.3)

Свяжем   с вектором поляризации Р. Для этого определим полный дипольный момент (во всем объеме) диэлектрика. Осуществим это двумя способами:

С одной стороны Р по определению дипольный момент единицы объема и если умножим на V, получим полный дипольный момент

(14.4)

где S - площадь пластины конденсатора.

С другой стороны рассмотрим диэлектрик как большой диполь, у которого с одной стороны заряд   , а с другой   и расстояние d. Отсюда

(14.5)

Приравнивая (14.4) и (14.5), получим

Подставляя   в (14.3), и затем результат в (14.2), получим

Подставим значение Р из выражения (14.1), тогда

(14.6)

Величина

(14.7)

называется диэлектрической проницаемостью или относительной диэлектрической проницаемостью. Диэлектрическая проницаемость   показывает во сколько раз уменьшается напряженность в диэлектрике по сравнению с напряженностью в вакууме.   и   , т.е. с ростом температуры диэлектрические свойства ухудшаются.

6. Электрическим током называется направленное (упорядоченное) движение заряженных частиц.

Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).

За направление электрического тока условно принято направление движения положительно заряженных частиц.

Для существования электрического тока в веществе необходимо:

  1. наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля:

  2. наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле;

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

Сила тока — скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока — основная единица в СИ 1 А — есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Η на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной Δl (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nSΔl частиц, где n — концентрация частиц. Их общий заряд 

Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов  , то за промежуток времени   все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока: 

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов   при максимально допустимых значениях силы тока ~ 10-4 м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е. 

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1),  . Направление вектора плотности тока   совпадает с направлением вектора скорости упорядоченного движения   положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

8. Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

В системе СИ:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]