
- •Билет 1.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 2.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 3.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 4.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 5.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 7.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 8.
- •Вопрос 1.
- •Вопрос 2.
- •Б илет 9.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 10.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 11.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 12.
- •Вопрос 1
- •Вопрос 2.
- •Вопрос 2.
- •Билет 15.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 16.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 1.
- •Вопрос 1.
- •Вопрос 2.
- •Б илет 19. Вопрос 1. Связь момента импульса твёрдоготела с угловой скоростью еговращения. Тензор инерции. Главные и центральные оси инерции. Оси свободного вращения.
- •Вопрос 2. Колебания системы с двумя степенями свободы. Нормальные колебания(моды). Нормальные частоты. Примеры.
- •Вопрос 1. Закон сохранения момента импульса системы тел и его связь с изотропностью пространства. Примеры.
- •Вопрос 2. Уравнение бегущей монохроматической волны. Частота, период колебаний, фазоваяскорость, лдолина волны, волновое число. Волновой вектор. Уравнение бегущих цилиндрической и сферичческой волн.
- •Билет 21.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 22.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 1.
- •Вопрос 1.
- •Вопрос 1.
- •Вопрос 2.
- •Билет 26.
- •Вопрос 1.
- •Вопрос 2.
Вопрос 2.
Изменение частоты звука при движении источника и приёмника. Эффект Доплера.
Эффект Доплера . Движение источника звука , сопровождающееся изменением расстояния от источника до приёмника ,приводит к изменению частоты принимаемого звука. Это связано с тем, что скорость распространения звуковой волны в среде не зависит от скорости движения источника. Поэтому , если источник звука движется от приёмника со скоростью v см/сек, то за единицу времени мимо приёмника пройдут не все максимумы, а только часть их: приёмник отметит меньшее число колебаний, чем создаёт источник. Убедиться в этом можно при помощи элементарного расчёта. Пусть источник в начале секунды находился на расстоянии с см от приёмника, с см/сек –скорость звука в среде, тогда через секунду он будет находится на расстоянии с+v см на этом расстоянии уложатся все f максимумов которые за 1 сек созданы излучателем (f-частота) , но за 1 секунду до приёмника дойдут не все максимумы, а часть на расстоянии с см f’=f/(1+v/c) –частота полученная приёмником ,если приёмник приближается то f’=f/(1-v/c); если же вдижется приёмник, а не источник ,то если приёмник движется к источнику со скоростью v то за 1 сек он пройдёт не f , а f ‘’ максимумов, где f’’=f(1+v/c) если удаляется то f‘’=f(1-v/c);
Билет 26.
Вопрос 1.
Энергия запасённая в колебательной системе. Взаимопревращение потенциальной и кинетической энергии. Потери энергии в системе с затуханием. Добротность.
Запас начальной кинетической и потенциальной энергий определяется из начального смещения и начальной скорости. Если бы потери энергии в системе отсутствовали, то этот начальный запас энергии оставался бы неизменным при колебаниях. Процесс колебаний сопровождался бы только переходом энергии из потенциальной в кинетическую и обратно, которые будут происходить в двое большей частотой, чем сами колебания.
U=kx2 /2=kx2cos2(wt+p)/2=kX2(1+cos2(wt+p))/4;
Tk=mV2/4(1- cos2(wt+p))/4; формулы содержат двойную частоту, но изменения потенциальной и кинетической энергий происходят по гармоническому закону. Так как амплитуды смещения и скорости связаны соотношеннием V=wX; то полная энергия равна W=Tk+U=kX2/2=mV2/2;
При наличии трения , являющегося внешней силой, энергия колебаний уменьшается.
Добротноть. Для характеристики осциллирующей системы часто принимается величина Q называемая добротностью. Эта величина представляет собой умноженное на 2 отношение запасённой энергии к среднему значению энергии, теряемому за один период. Большим значениям Q соответствует слабое затухание осциллятора.Q=/ , где логарифмический декримент затухания.
Вопрос 2.
Динамика твёрдого тела. Уравнение моментом относительно неподвижной точки, неподвижной оси и движущейся оси, проходящей через центр масс при плоском движении.
Твердое тело может рассматриваться как система материальных точек, расстояние между которыми постоянно.Поэтому все уравнения справедливые для системы материальных точек справедливы и для твердого тела: dp/dt=F; dL/dt=M; Для твёрдого тела эти уравнения являются замкнутой системой с их помощью без каких либо дополнительных условий можно полностью определить движение твёрдого тела в заданых внешних силовых полях. Необходимо лишь знать начальные условия. Из кинематики плоского движения известно, что в этом случае все точки движутся в пврвллельных плоскостях . Поэтому достаточно рассмотретьь движение какого-либо сечения тела в одной плоскости. Вектор угловой скорости всегда перпендикулярен плоскоски и следовательно имеет постоянное направление. Поэтому если ось Z связанной с телом системы провести перпендикулярно плоскости движения, то угловая скороть вращения всегда будет направленна по этой оси. Для того чтобы избежать учёта центробежных моментов тензора инерции целесообразно ось вращения провести через центр масс. Таким образом уравнения для плоского движения примут вид: mdv/dt=F; Jdw/dt=M;