Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЕОМЕТРИЯ_шпора.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
568.83 Кб
Скачать

Геометрия

Часть I

    1. ВЕКТОРЫ. Сложение векторов и умножение вектора на число. Коллинеарность и компланарность. Координаты вектора в аффинной системе координат. Скалярное и векторное произведения. Свойства, геометрический смысл этих произведений и их выражение в координатах.

Вектором называется направленный отрезок АВ с начальной точкой А и конечной точкой В, который обозначается символом или одной строчной буквой (рис. 3.1).

Д линой (или модулем) вектора называется число, равное длине отрезка, изображающего вектор. Записи и обозначают модули векторов и соответственно. Вектор , длина которого равна единице, называется единичным вектором, или ортом: орт обозначается .

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается символом . Длина такого вектора равна нулю и ему можно приписать любое направление.

Векторы и , расположенные на одной прямой или на параллельных прямых, называются коллинеарными ( ).

Два вектора называются равными ( ), если они: 1) имеют равные модули; 2) коллинеарны; 3) направлены в одну сторону.

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства. В этом случае вектор называется свободным.

Векторы называются компланарными, если они лежат на одной или на параллельных плоскостях.

Рассмотрим линейные операциями над векторами.

Произведением вектора на действительное число называется вектор , длина которого , а направление совпадает с , если , и противоположно , если . Из определения следует, что векторы и всегда расположены на одной или на параллельных прямых. Следовательно, равенство

(2.1)

выражает условие коллинеарности двух векторов.

Противоположным вектором называется произведение вектора на число , т.е. . Если , то орт вектора находится по формуле

. (2.2)

Суммой двух векторов и называется вектор , который идет из начала вектора в конец вектора при условии, что вектор приложен к концу вектора (рис. 3.2, а) (правило треугольника). Очевидно, что вектор в этом случае представляет диагональ параллелограмма, построенного на векторах и (рис. 3.2, б) (правило параллелограмма).

Аналогично определяется сумма нескольких векторов: если векторы , ,…, образуют ломаную , то суммой этих векторов является вектор , замыкающий эту ломаную (рис. 3.2, в) (правило многоугольника).

В частности, если ломаная замыкается, т.е. , то сумма ее звеньев равна нулевому вектору .

Р азностью двух векторов и называется вектор , являющийся суммой векторов и . Отметим, что вектор направлен к концу вектора , если и приведены к общему началу ( рис. 2.2, б).

Введенные операции умножения вектора на число и сложения векторов называются линейными и удовлетворяют ( и ) следующим свойствам:

1о. ; 2о. ; 3о. ;

4о. ; 5о. ; 6о. 1 = ;

7о. ; 8о. ( ) = + .