Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электронные приборы экз.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.22 Mб
Скачать

Основные параметры светодиодов

1. Сила света IV – световой поток, приходящийся на единицу телесного угла в заданном направлении, выражается в канделах (кд), и составляет десятые доли – единицы мкд. Кандела есть единица силы света, испускаемого специальным стандартным источником.

2. Яркость излучения равна отношению силы света к площади светящейся поверхности. Она составляет десятки–сотни кд/см2.

3. Постоянное прямое напряжение – падение напряжения на диоде при заданном токе (2…4 В).

4. Цвет свечения или длина волны, соответствующая максимальному световому потоку.

5. Максимально допустимый постоянный прямой ток, составляет десятки мА и определяет максимальную яркость излучения.

6. Максимальное допустимое постоянное обратное напряжение (единицы B).

7. Быстродействие излучающего диода определяется инерционностью возникновения излучения при подаче прямоугольного импульса прямого тока (рис. 5.7).

Время переключения tпер складывается из времени включения tвкл и выключения tвыкл излучения. Инерционность излучающего диода определяется процессом перезарядки барьерной емкости и процессами накопления и рассасывания неосновных носителей в активной области диода.

8. Диапазон температур окружающей среды, при которых светодиод сохраняет свою работоспособность (–60…+70 C).

9. Срок службы составляет 104…106 часов.

Существенным недостатком светодиодов является зависимость их параметров от температуры и продолжительности эксплуатации. С повышением температуры яркость и сила света уменьшаются, несколько увеличивается длина волны излучения. Это увеличение обусловлено тем, что с ростом температуры уменьшается ширина запрещенной зоны полупроводника. Постоянное уменьшение мощности излучения (деградация) при длительном протекании через прибор прямого тока связано с увеличением концентрации центров безизлучательной рекомбинации за счет перемещения в электрическом поле неконтролируемых примесных атомов.

Итак, характерными свойствами светодиодов является их высокая надежность, большой срок службы, малые инерционность, габариты, масса, потребляемая мощность, возможность изготовления светодиодных матриц и светодиодов с различным цветом свечения, совместимость с интегральными микросхемами.

Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов

  1. Фотоэлектронные приборы фотодиод , фоторезистор. Параметры .характеристики

Фотодиоды

Фотодиодом называют полупроводниковый фотоэлектрический прибор, в котором используется внутренний фотоэффект. Устройство фотодиода аналогично устройству обычного плоскостного диода. Отличие состоит в том, что его p–n переход одной стороной обращен к стеклянному окну, через которое поступает свет, и защищен от воздействия света с другой стороны. Фотодиоды могут работать в одном из двух режимов:

– без внешнего источника электрической энергии (вентильный или фотогенераторный, фотогальванический режим);

– с внешним источником электрической энергии (фотодиодный или фотопреобразовательный режим).

Рассмотрим работу фотодиода в вентильном режиме, схема включения представлена на рис.8.7.

Рис 8.7. Схема включения фотодиода для работы в вентильном режиме

При отсутствии светового потока на границе p–n перехода создается контактная разность потенциалов. Через переход навстречу друг другу протекают два тока – Iдр и Iдиф, которые уравновешивают друг друга. При освещении p–n перехода фотоны, проходя в толщу полупроводника, сообщают части валентных электронов энергию, достаточную для перехода их в зону проводимости, т.е. за счет внутреннего фотоэффекта генерируются дополнительные пары электрон-дырка. Под действием контактной разности потенциалов p–n перехода неосновные носители заряда n–области – дырки переходят в р–область, а неосновные носители заряда р–области – электроны – в n–область. Дрейфовый ток получает дополнительное приращение, называемое фототоком Дрейф неосновных носителей приводит к накоплению избыточных дырок в р–области, а электронов в n–области, это приводит к созданию на зажимах фотодиода при разомкнутой внешней цепи разности потенциалов, называемой фото-ЭДС Потенциальный барьер перехода, как и при прямом напряжении, уменьшается на величину фото-ЭДС, называемую напряжением холостого хода Uхх при разомкнутой внешней цепи. Снижение потенциального барьера увеличивает ток диффузии Iдиф основных носителей через переход. Он направлен навстречу фототоку. Поскольку ключ разомкнут, в структуре устанавливается термодинамическое равновесие токов:

. (8.5)

Значение фото-ЭДС не может превышать контактной разности потенциалов p–n перехода. В противном случае из-за полной компенсации поля в переходе разделение оптически генерируемых носителей прекращается. Так, например, у селеновых и кремниевых фотодиодов фото-ЭДС достигает 0,5…0,6 В, у фотодиодов из арсенида галлия – 0,87 В.

При подключении нагрузки к освещенному фотодиоду (ключ замкнут), в электрической цепи появится ток, обусловленный дрейфом неосновных носителей. Значение тока зависит от фото-ЭДС и сопротивления нагрузки, максимальный ток при одной и той же освещенности фотодиода будет при сопротивлении резистора, равном нулю, т.е. при коротком замыкании фотодиода. При сопротивлении резистора не равном нулю, ток во внешней цепи фотодиода уменьшается.

Ток, протекающий через фотодиод, можно записать в следующем виде:

, (8.6)

где Iф – фототок;

I0 – тепловой ток p–n перехода;

U – напряжение на диоде.

При разомкнутой внешней цепи (Rн=, Iф общ=0) легко выразить напряжение на переходе при холостом ходе, которое равно фото-ЭДС:

. (8.7)

Фотодиоды, работающие в режиме фотогенератора, часто используются в качестве источников питания, преобразующих энергию солнечного излучения в электрическую.

В фотодиодном или фотопреобразовательном режиме работы последовательно с фотодиодом включается внешний источник энергии, смещающий диод в обратном направлении (рис. 5.12).

Рис.8.8. Схема включения фотодиода для работы в фотодиодном режиме

При отсутствии светового потока и под действием обратно приложенного напряжения через фотодиод протекает обычный начальный обратный ток Iо, который называют темновым. Темновой ток ограничивает минимальное значение светового потока. При освещении фотодиода кванты света дополнительно вырывают электроны из валентных связей полупроводника, увеличивая тем самым поток неосновных носителей заряда через p–n переход. Чем больше световой поток, падающий на фотодиод, тем выше концентрация неосновных носителей заряда вблизи запорного слоя, и тем больший фототок , определяемый напряжением внешнего источника и световым потоком, протекает через диод.

При правильно подобранном сопротивлении нагрузки Rн и напряжении источника питания этот ток будет зависеть только от освещенности прибора, а падение напряжения на сопротивлении можно рассматривать как полезный сигнал.

Фотодиодный режим характеризуется высокой чувствительностью, большим динамическим диапазоном преобразования оптического излучения, высоким быстродействием (барьерная емкость p–n перехода уменьшается). Недостатком фотодиодного режима работы является большой темновой ток, зависящий от температуры.