Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория вероятностии.docx
Скачиваний:
7
Добавлен:
01.05.2025
Размер:
448.3 Кб
Скачать

11.Распределение Пуассона

Третье широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если

,

где λ – параметр распределения Пуассона, и P(Y=y)=0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона

M(Y) = λ, D(Y) = λ.

Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = λ. Точнее, справедливо предельное соотношение

Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».

Распределение Пуассона возникает в теории потоков событий (см. выше). Доказано, что для простейшего потока с постоянной интенсивностью Λ число событий (вызовов), происшедших за время t, имеет распределение Пуассона с параметром λ = Λt. Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e-Λt, т.е. функция распределения длины промежутка между событиями является экспоненциальной.

Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д.

Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в обширной (более миллиона названий статей и книг на десятках языков) литературе по вероятностно-статистическим методам.

12.Нормальный закон распределения. Числовые характеристики нормального закона. Свойства нормальной кривой. Правило 3-х сигм, его практическое применение.

 Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса.

            Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры  и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

            Найдем функцию распределения F(x).

            График плотности нормального распределения называется нормальной кривой или кривой Гаусса.

            Нормальная кривая обладает следующими свойствами:

            1) Функция определена на всей числовой оси.

            2) При всех х функция распределения принимает только положительные значения.

            3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х, значение функции стремится к нулю.

            4) Найдем экстремум функции.

            Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .

            5) Функция является симметричной относительно прямой х = а, т.к. разность

(х – а)  входит в функцию плотности распределения в квадрате.

            6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

            При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

            В этих точках значение функции равно .

            Построим график функции плотности распределения.

            Построены графики при т =0 и трех возможных значениях среднего квадратичного отклонения s= 1, s = 2 и s = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается..

            Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

            При а = 0 и s = 1 кривая называется нормированной.

13.Понятие генеральной совокупности. Понятие случайной выборки. Вариационные ряды распределения. Виды рядов Генеральная совокупность, генеральная выборка (от лат. generis — общий, родовой)(в англ. терминологии — population) — совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.

Генеральная совокупность состоит из всех объектов, которые имеют качества, свойства, интересующие исследователя. Иногда генеральная совокупность — это все взрослое население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объекты исследования. Например, женщины 10-89 лет, использующие крем для рук определённой марки не реже одного раза в неделю, и имеющие доход не ниже 5 тысяч рублей на одного члена семьи.

ПРОСТАЯ СЛУЧАЙНАЯ ВЫБОРКА

При проведении простой случайной выборки (Simple Random Sampling — SRS) каждый эле­мент совокупности имеет известную и равную вероятность отбора. Более того, каждая возмож­ная выборка данного объема (n) имеет известную и равную вероятность того, что она станет вы­борочной совокупностью. Это означает, что каждый элемент отбирается независимо от другога. Выборка формируется произвольным отбором элементов из основы выборки. Этот метод по­хож на розыгрыш лотереи, когда таблички с именами участников помещаются в барабан, кото­рый встряхивается, и из него произвольным образом извлекают отдельные таблички, в резуль­тате объективно определяются имена победителей.

ПРОСТАЯ СЛУЧАЙНАЯ ВЫБОРКА (SIMPLE RANDOM SAMPLING — SRS) - Вероятностный метод выборки, согласно которому каждый элемент генеральной совокупно­сти имеет известную и равную вероятность отбора. Каждый элемент выбирается независимо от каждого другого элемента, и выборка формируется произвольным отбором элементов из основы выборки.

При простой случайной выборке исследователь сначала формирует основу выборочного на­блюдения, в которой каждому элементу присваивается уникальный идентификационный но­мер. Затем генерируются случайные числа, чтобы определить номера элементов, которые будут включены в выборку. Эти случайные числа могут генерироваться компьютерной программой.

Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информа­ции с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения. Во-первых, часто сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.

Во-вторых, результатом применения простой случайной выборки может стать большая совокуп­ность, либо совокупность, распределенная по большой географической территории, что значи­тельно увеличивает время и стоимость сбора данных. В-третьих, результаты применения про­стой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов. В-четвертых, в результа­те применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полу­ченные простым случайным отбором, в среднем адекватно представляют генеральную сово­купность, некоторые из них крайне некорректно представляют изучаемую совокупность. Веро­ятность этого особенно велика при небольшом объеме выборки. Простая случайная выборка не часто используется в маркетинговых исследованиях. Более популярен метод систематической выборки.

Вариационными рядами называют ряды распределения, построенные по количественному признаку. Любой вариационный ряд состоит из двух элементов: вариантов и частот.  Вариантами считаются отдельные значения признака, которые он принимает в вариационном ряду.  Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность всей совокупности, её объём.  Частостями называются частоты, выраженные в долях единицы или в процентах к итогу. Соответственно сумма частостей равна 1 или 100 %.

В зависимости от характера вариации признака различают дискретные и интервальные вариационные ряды.  Пример дискретного вариационного ряда приведен в табл. 2.9.  Таблица 2.9 - Распределение семей по числу занимаемых комнат в отдельных квартирах в 1989 г. в РФ.

N П/п

Группы семей, проживающих в квартирах с числом комнат

Число семей

всего, тыс.ед.

в % к итогу

1

1

4064

16,3

2

2

12399

49,7

3

3

7659

30,7

4

4 и более

832

3,3

ВСЕГО

24954

100,00

Часто встречаются группировки, где известна численность единиц в группах или удельный вес каждой группы в общем итоге. Такая группировка называется рядом распределения. Ряд распределения характеризуется двумя элементами:

1.    Обозначение группы

2.    Численность единиц в группах

Численность каждой группы называется частотами ряда распределения. Сумма всех частот определяет численность всей совокупности. Численность групп, выраженная в долях от общей численности единиц называется частостями и выражается в процентах.

Ряды распределения могут быть образованы по атрибутивному или количественному признакам. При группировке по атрибутивному признаку ряд распределения составляют отдельные группы, указываемые их наименованием и численность или удельный вес каждой группы в процентах к итогу.

При группировке данных по количественному признаку получаются ряды, называемые вариационными. В статистике различают вариационные ряды прерывные (дискретные) и непрерывные. Вариационный ряд будет дискретным, если его группы составлены по признаку изменяющемуся прерывно. Вариационный ряд называется непрерывным если группировочный признак, составляющий основание группировки может принимать в определенном интервале любые значения.