
- •1.Основные понятия и формулы комбинаторики.
- •2.Случайные события и действия над ними. Виды событий
- •3. Аксиоматическое определение вероятности
- •6.Понятие дискретной случайной величины. Закон распределения дискретной одномерной случайной величины. Функция распределения f(X), ее свойства.
- •7.Числовые характеристики дискретной случайной величины.
- •8.Схема Бернулли. Формула Бернулли. Локальная и интегральная теорема Муавра-Лапласа
- •9.Биномиальное распределение.
- •10.Понятие непрерывной случайной величины. Функция распределения, ее свойства. Функция плотности распределения вероятностей, ее свойства. Числовые характеристики непрерывных случайных величин.
- •11.Распределение Пуассона
- •12.Нормальный закон распределения. Числовые характеристики нормального закона. Свойства нормальной кривой. Правило 3-х сигм, его практическое применение.
- •14.Дискретный вариационный ряд и его числовые характеристики
- •15.Интервальный статистический ряд и его числовые характеристики.
- •16.Статистическое оценивание параметров распределения по выборке. Точечные оценки параметров распределения
- •18.Статистическая проверка гипотез. Мощность критерия. Критические области
- •19.Статистическая проверка гипотез. Ошибки первого и второго родов.
- •Уровень значимости
- •Мощность и ошибка второго рода
- •20.Двумерная случайная величина. Закон распределения. Условные законы распределения.
- •21.Двумерная случайная величина. Числовые характеристики двумерной случайной величины.
- •2 Типа взаимосвязей между х и у:
21.Двумерная случайная величина. Числовые характеристики двумерной случайной величины.
Пусть (x , h ) - двумерная случайная величина, тогда M(x , h )=(M(x ), M(h )), т.е. математическое ожидание случайного вектора - это вектор из математических ожиданий компонент вектора.
Если (x , h ) - дискретный случайный вектор с распределением
|
y1 |
y2 |
... |
ym |
x1 |
p11 |
p12 |
... |
p1m |
x2 |
p12 |
p12 |
... |
p2m |
... |
... |
... |
pij |
... |
xn |
pn1 |
pn2 |
... |
pnm |
то математические ожидания компонент вычисляются по формулам:
,
.
Эти формулы можно записать в сокращенном виде.
Обозначим
и
,
тогда
и
.
Если p(x , h )(x, y)- совместная плотность распределения непрерывной двумерной случайной величины (x , h ), то
и
.
Поскольку
-плотность
распределения случайной величины x ,
то
и,
аналогично,
.
Дисперсия
Понятие дисперсии обобщается на многомерные случайные величины нетривиальным образом. Это обобщение будет сделано в следующем разделе. Здесь лишь приведем формулы для вычисления дисперсии компонент двумерного случайного вектора.
Если (x , h ) - двумерная случайная величина, то
Dx = M(x - Mx )2 = Mx 2 - M(x )2, Dh = M(h - Mh )2 = Mh 2 - M(h )2.
Входящие в эту формулу математические ожидания вычисляются по приведенным выше формулам.
Условное математическое ожидание
Между случайными величинами может существовать функциональная зависимость. Например, если x - случайная величина и h =x 2, то h - тоже случайная величина, связанная с xфункциональной зависимостью. В то же время между случайными величинами может существовать зависимость другого рода, называемая стохастической. В разделе, посвященном условным распределениям уже обсуждалась такая зависимость. Из рассмотренных там примеров видно, что информация о значении одной случайной величины (одной компоненты случайного вектора) изменяет распределение другой случайной величины (другой компоненты случайного вектора), а это может, вообще говоря, изменить и числовые характеристики случайных величин.
Математическое ожидание, вычисленное по условному распределению, называется условным математическим ожиданием.
Для двумерного дискретного случайного вектора (x , h ) с распределением
Если между случайными величинами x и h существует стохастическая связь, то одним из параметров, характеризующих меру этой связи является ковариация cov(x , h ). Ковариацию вычисляют по формулам cov(x , h )=M[(x - Mx )(h - Mh )] = M(x h) - Mx Mh .
Если случайные величины x и h независимы, то cov(x ,h )=0.
Обратное, вообще говоря, неверно. Из равенства нулю ковариации не следует независимость случайных величин. Случайные величины могут быть зависимыми в то время как их ковариация нулевая! Но зато, если ковариация случайных величин отлична от нуля, то между ними существует стохастическая связь, мерой которой и является величина ковариации.
Свойства ковариации:
cov(x , x ) = Dx ;
Понятно,
что значение ковариации зависит не
только от “тесноты” связи случайных
величин, но и от самих значений этих
величин, например, от единиц измерения
этих значений. Для исключения этой
зависимости вместо ковариации используется
безразмерный коэффициент
корреляции
.
22.Понятие
функции регрессии.
Для количественного описания взаимосвязей между экономическими переменными в статистике используют методы регрессии и корреляции.
Регрессия - величина, выражающая зависимость среднего значения случайной величины у от значений случайной величины х.
Уравнение регрессии выражает среднюю величину одного признака как функцию другого.
Функция регрессии - это модель вида у = л», где у - зависимая переменная (результативный признак); х - независимая, или объясняющая, переменная (признак-фактор).
Линия регрессии - график функции у = f (x).