
- •Семантическое моделирование данных: er-диаграммы
- •Реляционная модель данных: домены и отношения Общая характеристика реляционной модели данных
- •Типы данных – множество значений, множество операций
- •Простые типы данных
- •Структурированные типы данных
- •Ссылочные типы данных
- •Типы данных, используемые в реляционной модели
- •Отношения, атрибуты, кортежи отношения Определения и примеры
- •Свойства отношений
- •Первая нормальная форма
- •Реляционная модель данных: целостность
- •Целостность в реляционной модели данных
- •Реляционная модель данных: реляционная алгебра
- •Ограничения на операции
- •Соединение
- •Деление
- •Манипулирование реляционными данными
- •Реляционная модель данных: реляционное исчисление кортежей Реляционное исчисление
- •Исчисление кортежей
- •Реляционная алгебра и реляционное исчисление
- •Проектирование реляционных баз данных на основе принципов нормализации: функциональные зависимости
- •Проектирование реляционных баз данных на основе принципов нормализации: 1nf, 2nf, 3nf, bcnf Нормальная форма
- •Роль нормализации в проектировании реляционных баз данных
- •Нормальные формы
- •Первая нормальная форма (1nf)
- •Вторая нормальная форма (2nf)
- •Третья нормальная форма (3nf)
- •Нормальная форма Бойса — Кодда (bcnf)
- •Типы данных Transact-sql Типы данных (Transact-sql)
- •Типы данных
- •Преобразования типа Transact-sql Преобразование типов данных (компонент Database Engine)
- •Скалярные выражения Transact-sql
- •Логические выражения Transact-sql Логические операторы (Transact-sql)
- •Табличные выражения Transact-sql Табличные выражения
- •7.2.1. Предложение from
- •7.2.1.1. Соединённые таблицы
- •7.2.1.2. Псевдонимы таблиц и колонок
- •7.2.1.3. Подзапросы
- •7.2.1.4. Табличные функции
- •7.2.2. Предолжение where
- •7.2.3. Предложения group by и having
- •7.2.4. Обработка оконных функций
- •Обобщенные табличные выражения Transact-sql Применение обобщенных табличных выражений
- •With обобщенное_табличное_выражение (Transact-sql)
- •Рекомендации по созданию и использованию обобщенных табличных выражений
- •Рекомендации по созданию и использованию обобщенных табличных выражений
- •Рекомендации по созданию и использованию рекурсивных отв
- •Инструкции языка управления потоком Transact-sql Язык управления потоком (Transact-sql)
- •Сценарии и пакеты Transact-sql Сценарии языка Transact-sql
- •Инструкции языка описания данных Transact-sql Инструкции языка описания данных ddl (Transact-sql)
- •Инструкции alter (Transact-sql)
- •Инструкции create (Transact-sql)
- •Инструкции drop (Transact-sql)
- •Ограничения целостности Transact-sql
- •Инструкции языка обработки данных Transact-sql
- •Предложение for (Transact-sql)
- •Инструкции языка контроля доступа к данным Transact-sql
- •Хранимые процедуры Transact-sql Хранимые процедуры (компонент Database Engine)
- •Функции Transact-sql Основные сведения о пользовательских функциях
- •Триггеры Transact-sql Триггеры dml
- •Курсоры Transact-sql Курсоры
- •Использование простого курсора и синтаксиса
- •Индексы Transact-sql Индексы
- •Вторичный индекс path типа данных xml
- •Вторичный индекс value типа данных xml
- •Вторичный индекс property
- •Управление транзакциями в sql Server Инструкции транзакций (Transact-sql)
- •Журналирование в sql Server Журнал транзакций (sql Server)
- •Просмотр журнала ошибок sql Server
- •Управление безопасностью в sql Server
- •Массовый импорт и экспорт данных в sql Server Массовый импорт и экспорт данных (sql Server)
- •Методы массового импорта и экспорта данных
- •Файлы форматирования
- •Метаданные в sql Server Метаданные (службы Master Data Services)
- •Распределенные запросы и распределенные транзакции в sql Server Распределенные запросы
- •Распределенные транзакции Transact-sql
- •Распределенные запросы и распределенные транзакции
Реляционная модель данных: целостность
Целостная часть описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей.
Целостность в реляционной модели данных
Кодд предложил два декларативных механизма поддержки целостности реляционных баз данных, которые затверждены в реляционной модели данных и должны поддерживаться в любой реализующей ее СУБД: ограничение целостности сущности, или ограничение первичного ключа и ограничение ссылочной целостности, или ограничение внешнего ключа. Мы снова оставим подробности и формализмы на лекцию 3 и приведем здесь только изложение общих идей.
Ограничение целостности сущности звучит следующим образом: для заголовка любого отношения базы данных должен быть явно или неявно определен первичный ключ, являющийся таким минимальным подмножеством заголовка отношения, что в любом теле этого отношения, которое может появиться в базе данных, значение первичного ключа в любом кортеже этого тела является уникальным, т.е. отличается от значения первичного ключа в любом другом кортеже. Под минимальностью первичного ключа понимается то, что если из множества атрибутов первичного ключа удалить хотя бы один атрибут, то ограничение целостности изменится, т.е. в БД смогут появляться тела отношений, которые не допускались исходным первичным ключом.
Если первичный ключ не объявляется явно, то в качестве первичного ключа отношения принимается весь его заголовок. Понятно, что поскольку по определению любое тело отношения с заданным заголовком является множеством, следовательно, в нем отсутствуют дубликаты, и первичный ключ, совпадающий с заголовком отношения, всегда обладает свойством уникальности. Должно быть понятно, что в этом случае определение первичного ключа не задает никакого ограничения целостности.
Чтобы пояснить смысл ограничения ссылочной целостности, нужно сначала ввести понятие внешнего ключа. В принципе при использовании реляционной модели данных можно хранить все данные, соответствующие предметной области в одной таблице. Пример такой базы данных демонстрировался в лекции 1 на рис. 1.6 , где в одном файле (интуитивном аналоге отношения) хранилась информация и о служащих, и об отделах, в которых они работают. Как было показано в лекции 1, такой подход приводит к избыточности хранения (данные об отделе повторяются в каждой записи о служащем этого отдела) и усложняет выполнение некоторых операций.
На рис. 1.7 для хранения информации о служащих и отделах использовалось два файла, в одном из которых хранились данные, индивидуальные для каждого служащего, а во втором – данные об отделах. Для возможности получения полной информации о служащих и отделах, в которых они работают, в файле СЛУЖАЩИЕ содержалось поле СЛУ_ОТД_НОМЕР, содержащее для каждого служащего его уникальный номер отдела. В то же время, в файле ОТДЕЛЫ имелось поле ОТД_НОМЕР, являющееся уникальным ключом этого файла. На самом деле, введя файлы СЛУЖАЩИЕ и ОТДЕЛЫ, а также обеспечив связь между ними с помощью полей СЛУ_ОТД_НОМЕР и ОТД_НОМЕР, мы смогли обеспечить табличное представление иерархии ОТДЕЛ-СЛУЖАЩИЕ. Если говорить в терминах реляционной модели данных, то в отношении ОТДЕЛЫ поле ОТД_НОМЕР является первичным ключом, а в отношении СЛУЖАЩИЕ поле СЛУ_ОТД_НОМЕР является внешним ключом, ссылающимся на отношение ОТДЕЛЫ.
Более точно, внешним ключом отношения R1, ссылающимся на отношение R2, называется подмножество заголовка HR1, которое совпадает с первичным ключом отношения R2 (с точностью до имен атрибутов). Тогда ограничение ссылочной целостности реляционной модели данных можно сформулировать следующим образом: в любом теле отношения R1, которое может появиться в базе данных, для «не пустого»4) значения внешнего ключа, ссылающегося на отношение R2, в любом кортеже этого тела должен найтись кортеж в теле отношения R2, которое содержится в базе данных, с совпадающим значением первичного ключа. Легко заметить, что это почти то же самое ограничение, о котором говорилось в подразделе 2.3.2. Иерархическая модель данных: никакой потомок не может существовать без своего родителя, но немного уточненное – ссылки на родителя должны быть корректными.