
- •Лекция № 14 детекторы положения, перемещений и уровня
- •7.1. Потенциометрические датчики
- •7.2. Гравитационные датчики
- •7.3. Емкостные датчики
- •7.4. Индуктивные и магнитные датчики
- •7.4.2 Вихре токовые датчики
- •7.4.3 Поперечный индуктивный датчик
- •7.5. Оптические датчики
- •7.5.1. Оптические мостовые схемы
- •7.5.2. Поляризационный детектор приближения
- •7.5.3. Волоконооптические датчики
- •Лекция № 15 датчики давления и температуры
- •10.3. Ртутные датчики давления
- •10.4. Сильфоны, мембраны и тонкие пластины
- •10.5. Пьезорезистивные датчики
- •10.6. Емкостные датчики
- •10.7. Датчики переменного магнитного сопротивления
- •10.8. Оптоэлектронные датчики
- •Датчики температуры
- •16.1. Терморезистивные датчики
- •16.1.3. Термисторы
- •16.1.3. 1 Термисторы с отрицательным температурным коэффициентом сопротивления
- •16.2. Термоэлектрические контактные датчики
- •16.2.3. Термопарные сборки
- •Лекция № 16 автоматизация процессов термической обработки основные виды автоматизации технологических процессов термической обработки
- •Преобразователи датчиков
- •3. Вторичные приборы систем автоматического контроля и регулирования
- •4. Приборы и установки для измерения углеродного потенциала контролируемых атмосфер
- •5. Регулирующие устройства
- •6. Исполнительные механизмы
- •9. Самонастраивающиеся и многоконтурные системы и комплексы автоматического регулирования
- •10. Промышленные роботы
Лекция № 16 автоматизация процессов термической обработки основные виды автоматизации технологических процессов термической обработки
В современных термических цехах используют следующие основные виды автоматизации:
автоматический контроль и автоматическое регулирование различных технологических параметров (температуры, давления и расхода газов и жидкостей, соотношения топлива и воздуха, состава контролируемых атмосфер и т. д.);
автоматический контроль качества термически обработанных деталей;
автоматическое управление механизмами и транспортными устройствами (толкатели, вытаскиватели, шнеки, рольганги, конвейеры, дверцы печей и т. д.) термического оборудования.
Автоматический контроль технологического процесса применяют для получения информации о ходе процесса по значению одного или нескольких технологических параметров.
Автоматическое регулирование применяют для поддержания требуемого значения технологического параметра на определенном уровне — постоянном во времени или изменяющемся по заданной программе.
Автоматический контроль качества термообработанных деталей заключается в определении получаемых структур, толщины слоя при химико-термической обработке или закалке ТВЧ, твердости и других параметров. Этот контроль чаще всего осуществляется магнитно-электрическими приборами с использованием эталонных образцов.
Автоматическое управление работой термического оборудования осуществляется с целью последовательного выполнения различных операций технологического процесса; автоматизации трудоемких и вредных операций загрузки и выгрузки деталей при термической обработке с помощью промышленных роботов.
Системы автоматического контроля, регулирования и управления в термических цехах состоят из различных устройств: датчиков, измерительных, самопишущих и регулирующих приборов, исполнительных механизмов и регулирующих органов.
Датчики для измерения углеродного потенциала контролируемых атмосфер. В практике термической обработки применяют методы прямого и косвенного измерения углеродного потенциала атмосферы. Прямой метод основан на определении изменения электросопротивления датчика — тонкой проволоки из технически чистого железа (фольги), в результате его науглероживания при химико-термической обработке. При этом методе учитываются возможные колебания температуры, давления и состава контролируемого газа в печи. Недостатки метода — ограниченные пределы измерения углеродного потенциала (0,2—1,2%) и одноразовое действие датчика [3].
Косвенный метод контроля и регулирования углеродного потенциала заключается в отборе из генератора или печи пробы газа и анализе ее на содержание одного из компонентов газовой смеси. Возможность применения косвенного метода основана на том, что углеродный потенциал эндотермической атмосферы, в которой количество газов СО, Н2 и N2 практически постоянно, можно регулировать изменением содержания одного из трех газов: Н20, СО2ИСН4. В практических условиях углеродный потенциал атмосферы измеряют и регулируют либо по содержанию в ней водяных паров, определяемому точкой росы газа, либо по содержанию С02.
Углеродный потенциал атмосферы можно рассчитать по кислородному потенциалу (02-потенциалу), если известны температура и концентрация СО в атмосфере [4].
Датчики для измерения точки росы. Датчик конструкции НИИТАвтопрома [11] представляет собой кварцевую трубку, обмотанную слоем стеклоткани, пропитанной раствором хлористого лития. Поверх стеклоткани намотаны два изолированных один от другого электрода из платиновой проволочки, к которым подведено переменное напряжение. При контакте датчика с газом, содержащим водяные пары, хлористый литий вследствие своей гигроскопичности поглощает воду, образуя электролит. При этом между электродами проходит электрический ток, что приводит к повышению температуры датчика и испарению влаги из электролита. Когда содержание влаги в датчике становится меньше, чем в окружающем газе, снова начинается процесс поглощения водяных паров и нагрев датчика. Поглощение и испарение влаги датчиком продолжается до тех пор, пока между влажностью газа и количеством влаги в хлористом литии не установится при определенной температуре динамическое равновесие. Температура равновесия (точки росы) измеряется медным термометром сопротивления, помещенным внутри кварцевой трубки и подключенным к электронному мосту.
Эбонитовый датчик представляет собой пористый эбонитовый стержень, пропитанный хлористым литием. В зависимости от влажности пробы газа сопротивление датчика, измеряемое электронным мостом, изменяется от 10е до 1012 Ом. Эти датчики не могут быть использованы для измерения и регулирования углеродного потенциала при нитроцементации, так как хлористый литий взаимодействует с аммиаком атмосферы, и датчики выходят из строя.
Датчик кислородного потенциала представляет собой твердоэлектролитную ячейку (ТЭЯ), обладающую кислородно-аниоиной проводимостью. Внешний электрод датчика, представляющий собой запаянную трубку из твердого раствора окиси кальция в двуокиси циркония, находится в атмосфере анализируемого газа. К внутреннему (эталонному) электроду датчика подается воздух с известным кислородным потенциалом. Между внутренним и внешним электродами дат- чика возникает разность потенциалов, зависящая от концентрации кислорода в воздухе и анализируемом газе, которая измеряется вторичным прибором.
Датчики для измерения давления и расхода жидкостей и газов. Для измерения давления (абсолютного, избыточного или вакуума) и расхода (по перепаду давления) жидкостей и газов применяют датчики с электрическим выходным сигналом переменного тока или датчики ГСП с унифицированным выходным сигналом.
Датчики с электрическим выходным сигналом переменного тока и с дифференциально-трансформаторными преобразователями используются в комплекте со вторичными автоматическими электронными приборами с дифференциально-трансформаторной измерительной схемой (ЭПИД, ДС1, КОД 1 и др.), Датчики с ферродинамическими преобразователями работают в комплекте со вторичными автоматическими приборами (ВСФ, КСФ2 и др.) с ферродинамической измерительной схемой.
Датчики ГСП по виду унифицированного выходного сигнала подразделяются па датчики с электрическим токовым и пневматическим выходными сигналами Дистанционной передачи. Датчики ГСП применяют для измерения перепада давления или расхода жидкостей и газов в комплекте с вторичными приборами и регуляторами, работающими от унифицированного электрического (прибора серии КСУ) или пневматического (приборы ПВ системы «Старт») сигналов.