
- •Основные преимущества мехатронных устройств.
- •2. Мехатронные модули. Развитие мехатронных модулей.
- •3) Определения и терминология мехатроники.
- •4.Структура и принципы интеграции мехатронных систем
- •5.Основные элементы мс
- •7. Анализ структуры традиционной машины с компьютерным управлением.
- •8. Классификация мехатронных модулей.
- •10. Мехатронные модули движения
- •11 .Развитие мехатронных модулей движения
- •12. Приводы мехатронных модулей
- •14.Мехатронные модули линейного движения
- •15. Мехатронные модули типа "двигатель - рабочий орган"
- •19. Беззазорные передачи. Способы устранения зазоров.
- •22.Интелектуальный Датчик движения
- •23.Сенсоры мехатронных модулей
- •26. Интеллектуальные сенсоры мехатронных модулей и систем.
- •27.Особенности постановки задач управления мехатронными системами.
- •29. Особенности решения обратной задачи
- •31. Принципы построения систем интеллектуального управления в мехатронике
- •32.Основные признаки систем интеллектуального управления.
- •33. Иерархия управления в мехатронных системах
- •34. Системы управления исполнительного уровня
- •35. Адаптивное регулирование по эталонной модели
- •36.Нечеткие регуляторы исполнительного уровня
- •38.Системы управления тактического уровня. Система контурного силового управления технологическим роботом
- •39.Способы программирования траекторий технологических роботов
- •40. Интеллектуальные системы управления на основе нейронных сетей.
- •41) Применение нейронных сетей для управления мехатронными системами.
- •42) История развития робототехники.
- •43) Принципиальная схема роботов первого поколения
- •46.Приводы роботов. Классификация.
- •47.Пневматический привод. Основные элементы, устройство. Особенности привода.
- •48.Гидравлический привод. Основные элементы, устройство. Особенности привода.
- •По возможности регулирования Регулируемый гидропривод
- •Нерегулируемый гидропривод
- •49) Электрические приводы. Виды приводов
- •50) Шаговые двигатели , устройство , принцип работы.
- •52. Асинхронные двигатели, устройство, принцип работы.
- •53.Двигатели постоянного тока, устройство, принцип работы
- •54. Захватные устройства
11 .Развитие мехатронных модулей движения
Уровни |
Мехатронные объекты |
1-й уровень |
Мехатронизированные модули |
2-й уровень |
Мехатронные модули |
3-й уровень |
Интеллектуальные МО |
Перспективный уровень |
Мехатронные комплексы |
ММ 1-го уровня - мотор-редукторы, где механический редуктор и управляемый двигатель выпускаются как единый функциональный элемент (например, спироидные и червячные мотор-редукторы). Мехатронные агрегаты на основе этих модулей нашли широкое применение при создании средств комплексной автоматизации производств (конвейеров, транспортеров, поворотных столов, вспомогательных манипуляторов). Необходимо сделать примечание: здесь приведены объекты, имеющие лишь две компоненты - механическую и электрическую, а поэтому, согласно определению, к мехатронным не относящиеся. Указанные ММ следует, по мнению автора, отнести к мехатронизированным объектам [6].
ММ 2-го уровня появились в 1980-х гг. в связи с развитием новых электронных технологий, которые позволили создать миниатюрные датчики и электронные блоки для обработки их сигналов. Объединение приводных модулей с указанными компонентами привело к появлению ММ движения, состав которых полностью соответствует определению мехатроники, где присутствует интеграция механических, электротехнических и электронных элементов [6].
ММ 3-го уровня обусловлены процессом интеллектуализации МО, в первую очередь, процесса управления функциональными движениями. Одновременно идет разработка новых принципов и технологий высокоточных и компактных механических узлов, а также новых типов электродвигателей (в первую очередь высокомоментных, бесколлекторных и линейных), датчиков обратной связи и информации. Этот уровень указывает на наличие неинтеллектуализированных МО, а системы с интеллектуальным управлением завершают действующее определение мехатроники [6].
12. Приводы мехатронных модулей
Классификация приводов. Привод, как известно, включает, прежде всего, двигатель и устройство управления им. Кроме того, в состав привода могут входить различные механизмы для передачи и преобразования движения (редукторы, преобразователи вращательного движения в поступательное и наоборот), тормоз и муфта.
^ Применение пневматических приводов в МС объясняется их дешевизной, простотой и соответственно надежностью. Правда, эти приводы плохо управляемы и поэтому используются в основном как нерегулируемые с цикловым управлением. Пневматические приводы применяют только в роботах небольшой грузоподъемности — до 10 кг, реже 20 кг. ^ Гидравлические приводы наиболее сложны и дороги по сравнению с пневматическими и электрическими. Однако при мощности 500—1000 Вт и выше они обладают наилучшими массогабаритными характеристиками и поэтому являются основным типом привода для тяжелых и сверхтяжелых МС. Гидравлические приводы хорошо управляются, поэтому они нашли также применение в МС средней грузоподъемности, для которых требуются высококачественные динамические характеристики. ^ Электрический привод, несмотря на его хорошую управляемость, простоту подвода энергии, больший к.п.д. и удобство эксплуатации имеет худшие массогабаритные характеристики, чем пневматический и гидравлический приводы. Прогрессивное увеличение в последние годы доли электромеханических МС в общем парке мехатронных устройств в мире вызвано быстрым прогрессом в создании новых типов электрических двигателей, изначально предназначенных для роботов и позволяющих создавать более компактные комплектные приводы всех требуемых типов. На сегодня основная область применения электрических приводов в мехатронике — это устройства средней грузоподъемности (десятки килограмм), легкие МС с высококачественным управлением и мобильные роботы.
13. Мехатронные модули вращательного движения на базе высокомоментных двигателей. Высокомоментными называются двигатели постоянного тока с возбуждением от постоянных магнитов и электронной коммутацией обмоток, которые допускают многократную перегрузку по моменту. Для определения положения полюсов на роторе вентильного ВМД устанавливают дополнительные технические средства (например, датчики Холла, индуктивные и фотоэлектрические датчики). Обычно высокомоментные двигатели (ВМД) устойчиво работают на частотах вращения 0.1-1 1/мин, которые типичны для металлорежущих станов и промышленных роботов. Основные преимущества ВМД определяются отсутствием в приводе редуктора: - снижение материалоемкости, компактность и модульность конструкции; - повышенные точностные характеристики привода благодаря отсутствию зазоров; - исключение трения в механической трансмиссии позволяет существенно уменьшить погрешности позиционирования и нелинейные динамические эффекты на ползучих скоростях; - повышение резонансной частоты. ВМД выпускаются в настоящее время коллекторного и вентильного типов. Основные преимущества вентильных двигателей по сравнению с коллекторными: - высокая надежность, большой срок службы, минимальные затраты на обслуживание ( вследствие исключения искрения и износа щеток); - улучшенные тепловые характеристики (так как тепло рассеивается на обмотках статора, а на роторе тепловыделяющие элементы отсутствуют), отсюда возможность использования проводов малого сечения; - высокое быстродействие за счет высокого соотношения развиваемый момент/ момент инерции ротора; - большая перегрузочная способность по моменту (типично Мщах/Мно,, = 8 ) в широком диапазоне регулирования скорости; - близкие к линейным механические и регулировочные характеристики. Основной недостаток вентильных двигателей - наличие дорогостоящих магнитов и блока управления коммутацией обмоток, отсюда пониженный показатель мощность/цена и повышенные габариты. В современных модификациях эта проблема решается путем построения этих блоков на базе относительно дешевых интегральных микросхем. В состав современных мехатронных модулей движения на основе ВМД обязательно входят также датчики обратной связи и иногда управляемые тормоза, что позволяет отнести такие ММД ко второму поколению. В качестве датчиков наиболее часто применяются фотоимпульсные датчики (инкодеры), тахогенераторы, резольверы и кодовые датчики положения. Принципиально важно, что модуль "двигатель-датчик" имеет единый вал, что позволяет сочетать высокие технические параметры и низкую стоимость. Также модули данного типа могут применяться в нетрадиционных транспортных средствах: электромобилях, электровелосипедах, инвалидных колясках и т.п