
- •Основные преимущества мехатронных устройств.
- •2. Мехатронные модули. Развитие мехатронных модулей.
- •3) Определения и терминология мехатроники.
- •4.Структура и принципы интеграции мехатронных систем
- •5.Основные элементы мс
- •7. Анализ структуры традиционной машины с компьютерным управлением.
- •8. Классификация мехатронных модулей.
- •10. Мехатронные модули движения
- •11 .Развитие мехатронных модулей движения
- •12. Приводы мехатронных модулей
- •14.Мехатронные модули линейного движения
- •15. Мехатронные модули типа "двигатель - рабочий орган"
- •19. Беззазорные передачи. Способы устранения зазоров.
- •22.Интелектуальный Датчик движения
- •23.Сенсоры мехатронных модулей
- •26. Интеллектуальные сенсоры мехатронных модулей и систем.
- •27.Особенности постановки задач управления мехатронными системами.
- •29. Особенности решения обратной задачи
- •31. Принципы построения систем интеллектуального управления в мехатронике
- •32.Основные признаки систем интеллектуального управления.
- •33. Иерархия управления в мехатронных системах
- •34. Системы управления исполнительного уровня
- •35. Адаптивное регулирование по эталонной модели
- •36.Нечеткие регуляторы исполнительного уровня
- •38.Системы управления тактического уровня. Система контурного силового управления технологическим роботом
- •39.Способы программирования траекторий технологических роботов
- •40. Интеллектуальные системы управления на основе нейронных сетей.
- •41) Применение нейронных сетей для управления мехатронными системами.
- •42) История развития робототехники.
- •43) Принципиальная схема роботов первого поколения
- •46.Приводы роботов. Классификация.
- •47.Пневматический привод. Основные элементы, устройство. Особенности привода.
- •48.Гидравлический привод. Основные элементы, устройство. Особенности привода.
- •По возможности регулирования Регулируемый гидропривод
- •Нерегулируемый гидропривод
- •49) Электрические приводы. Виды приводов
- •50) Шаговые двигатели , устройство , принцип работы.
- •52. Асинхронные двигатели, устройство, принцип работы.
- •53.Двигатели постоянного тока, устройство, принцип работы
- •54. Захватные устройства
52. Асинхронные двигатели, устройство, принцип работы.
Асинхронный электродвигатель – электрическая асинхронная машина для преобразования электрической энергии в механическую.
Устройство асинхронного электродвигателя: асинхронный двигатель является самым распространенным из числа двигателей переменного тока. Он был изобретен русским изобретателем М.О. Доливо-Добровольским в 1888 году. Этот двигатель состоит из неподвижной части – статора и вращающейся части – ротора. Частями статора являются магнитопровод и корпус. Сердечник собран из изолированных листов электротехнической стали. С внутренней стороны полый цилиндр сердечника статора снабжен пазами, в которые закладывается статорная обмотка. Число катушек, образующих обмотку, должно быть кратно трем (3, 6, 9, 12 и т.д.). Ротор представляет собой укрепленный на валу цилиндр, собранный также как и сердечник статора, из листов электротехнической стали. В большинстве случаев ротор снабжается короткозамкнутой обмоткой, состоящей из медных или алюминиевых стержней, уложенных без изоляции в пазы на внешней поверхности магнитопровода ротора. Торцевые концы стержней замыкаются накоротко кольцами из того же материала.
Принцип действия: На обмотку статора подаётся напряжение, под действием которого по этим обмоткам протекает ток и создаёт вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в ней ЭДС. В обмотке ротора, под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создаёт вращающий электромагнитный момент, заставляющий ротор вращаться.
Частота вращения магнитного поля в асинхронном двигателе жестко связана с частотой сети f1 и числом пар полюсов статора (Р). При частоте f1 = 50 Гц существует следующий ряд частот вращения.
P |
1 |
2 |
3 |
4 |
n1, об/мин |
3 000 |
1500 |
1000 |
750 |
Большинство двигателей имеют 1-3 пары полюсов, реже 4. Большее число полюсов используется очень редко, такие машины имеют низкий КПД и коэффициент мощности, однако позволяют очень плавно и медленно вращать ротор двигателя.
53.Двигатели постоянного тока, устройство, принцип работы
Электродвигатели постоянного тока применяют в тех электроприводах, где требуется большой диапазон регулирования скорости, большая точность поддержания скорости вращения привода, регулирования скорости вверх от номинальной.
Под действием напряжения U через щетки, пластины коллектора и виток(простейший генератор) потечет ток i. По закону электромагнитной силы (закон Ампера) взаимодействие тока и магнитного поля В создает силу f, которая направлена перпендикулярно i. Направление силы f определяется правилом левой руки: на верхний проводник сила действует вправо, на нижний – влево. Эта пара сил создает вращающий момент Мвр, поворачивающий виток по часовой стрелке. При переходе верхнего проводника в зону южного полюса, а нижнего – в зону северного полюса концы проводников и соединенные с ними коллекторные пластины вступают в контакт со щетками другой полярности
Направление
тока в проводниках витка изменяется на
противоположное, а направление
сил f,момента
Мвр и тока во внешней цепи не изменяется.
Виток непрерывно будет вращаться в
магнитном поле и может приводить во
вращение вал рабочего механизма
(РМ).Таким образом, коллектор в режиме
двигателя не только обеспечивает контакт
внешней цепи с витком, но и выполняет
функцию механического инвертора, т.е.
преобразует постоянный ток во внешней
цепи в переменный ток в витке.Рассмотрение
принципа действия показывает, что машина
постоянного тока может работать как в
режиме генератора, так и в режиме
двигателя, т. е. обладает свойством
обратимости.