
- •Основные преимущества мехатронных устройств.
- •2. Мехатронные модули. Развитие мехатронных модулей.
- •3) Определения и терминология мехатроники.
- •4.Структура и принципы интеграции мехатронных систем
- •5.Основные элементы мс
- •7. Анализ структуры традиционной машины с компьютерным управлением.
- •8. Классификация мехатронных модулей.
- •10. Мехатронные модули движения
- •11 .Развитие мехатронных модулей движения
- •12. Приводы мехатронных модулей
- •14.Мехатронные модули линейного движения
- •15. Мехатронные модули типа "двигатель - рабочий орган"
- •19. Беззазорные передачи. Способы устранения зазоров.
- •22.Интелектуальный Датчик движения
- •23.Сенсоры мехатронных модулей
- •26. Интеллектуальные сенсоры мехатронных модулей и систем.
- •27.Особенности постановки задач управления мехатронными системами.
- •29. Особенности решения обратной задачи
- •31. Принципы построения систем интеллектуального управления в мехатронике
- •32.Основные признаки систем интеллектуального управления.
- •33. Иерархия управления в мехатронных системах
- •34. Системы управления исполнительного уровня
- •35. Адаптивное регулирование по эталонной модели
- •36.Нечеткие регуляторы исполнительного уровня
- •38.Системы управления тактического уровня. Система контурного силового управления технологическим роботом
- •39.Способы программирования траекторий технологических роботов
- •40. Интеллектуальные системы управления на основе нейронных сетей.
- •41) Применение нейронных сетей для управления мехатронными системами.
- •42) История развития робототехники.
- •43) Принципиальная схема роботов первого поколения
- •46.Приводы роботов. Классификация.
- •47.Пневматический привод. Основные элементы, устройство. Особенности привода.
- •48.Гидравлический привод. Основные элементы, устройство. Особенности привода.
- •По возможности регулирования Регулируемый гидропривод
- •Нерегулируемый гидропривод
- •49) Электрические приводы. Виды приводов
- •50) Шаговые двигатели , устройство , принцип работы.
- •52. Асинхронные двигатели, устройство, принцип работы.
- •53.Двигатели постоянного тока, устройство, принцип работы
- •54. Захватные устройства
29. Особенности решения обратной задачи
Обратная задача кинематики, как и прямая задача о положении, является одной из основных задач кинематического анализа и синтеза манипуляторов. Управление манипуляционными роботами, как правило, осуществляется в пространстве обобщенных координат, а координаты объектов манипулирования задаются в некоторой базовой системе. Таким образом, для управления положением и ориентацией робота возникает необходимость получения решения обратной задачи.
Обратная задача кинематики о положении состоит в определении обобщенных координат манипулятора:
по заданным в опорной системе координатам выходного звена - схвата робота:
где n - число степеней свободы. Для решения обратной задачи необходимым условием является
означающее, что в этом случае можно составить n независимых уравнений, число неизвестных в котором также равно n.Как правило, обратная задача оказывается более сложной по сравнению с прямой. Это объясняется следующим.
При
решении обратной задачи кинематики
может возникнуть кинематическая
неопределенность, когда для одного и
того же положения схвата может существовать
две или более конфигураций манипулятора,
т. е. для одного набора
может
существовать несколько наборов
и
в результате задача решается неоднозначно.
На практике для выбора однозначного решения обратной задачи кинематики обычно используют дополнительное условие, например, наличие ограничений в кинематических парах, наличие препятствий в зоне обслуживания и т.д.Условие (3) не является достаточным, поэтому существуют варианты, когда при его соблюдении решение обратной задачи отсутствует. Для того, чтобы в этом случае задача имела решение, следует уменьшить m на единицу.Таким образом, в случае, если n Если n>m, то решение обратной задачи существует, однако обратная задача в этом случае решается неоднозначно. Говорят, что манипулятор имеет избыточные степени подвижности. На практике это означает, что избыточные степени повышают функциональные возможности манипулятора.Еще одна сложность, связанная с решением обратной задачи кинематики, заключается в том, что аналитические соотношения содержат, как правило, обратные тригонометрические функции, которые являются неопределенными при некоторых значениях углов, что вносит дополнительную неопределенность в решение обратной задачи.Существуют различные методы получения решения обратной задачи, но, в целом, все методы решения обратной задачи кинематики можно разделить на аналитические и численные.
30.Обра́тная связь в технике — это процесс, приводящий к тому, что результат функционирования какой-либо системы влияет на параметры, от которых зависит функционирование этой системы. Другими словами, на вход системы подаётся сигнал, пропорциональный её выходному сигналу (или, в общем случае, являющийся функцией этого сигнала). Часто это делается преднамеренно, чтобы повлиять на динамику функционирования системы.
Различают положительную и отрицательную обратную связь. Отрицательная обратная связь изменяет входной сигнал таким образом, чтобы противодействовать изменению выходного сигнала. Это делает систему более устойчивой к случайному изменению параметров. Положительная обратная связь, наоборот, усиливает изменение выходного сигнала. Системы с сильной положительной обратной связью проявляют тенденцию к неустойчивости, в них могут возникать незатухающие колебания, т.е. система становится генератором.