
- •Матрица, виды матриц, действия над матрицами.
- •Свойства операций над матрицами:
- •Определители второго и третьего порядка (основные понятия, св-ва, вычисления)
- •Минор. Алгебраическое дополнение. Теорема Лапласа.
- •Приведение матрицы к ступенчатому виду. Элементарные преобразования строк и столбцов.
- •5.Приведение матрицы к ступенчатому виду. Элементарные преобразования строк и столбцов.
- •Обратная матрица. Способы нахождения.
- •Вычисление определителей высших порядков. Теорема Лапласа. Приведение определителя к ступенчатому виду.
- •Классификация систем линейных уравнений. Решение системы 3-х линейных уравнений с тремя неизвестными. Метод Гаусса, метод Крамера, матричный метод.
- •Система n- линейных уравнений с m переменными. Теорема Кроникера-Капелли. Базисное и частное решения.
- •11.Векторы, основные понятия, действия над векторами в геометрической и координатной форме.
- •1) Сложение векторов.
- •2) Вычитание векторов.
- •3) Умножение вектора на число.
- •2. Координаты вектора
- •3. Базис системы векторов.
- •Пример.
- •Проекция вектора на ось
- •Свойства проекций
- •Расстояние между двумя точками. Деление отрезка в данном отношении
- •Скалярное произведение векторов. Определение скалярного произведения векторов. Свойства скалярного произведения. Понятие скалярного произведения
- •Угол между векторами и значение скалярного произведения
- •Скалярный квадрат вектора Свойства скалярного произведения
- •13.Векторное произведение векторов. Его св-ва. Определение векторного произведения через координаты векторов. Нахождение площадей параллелограмма и треугольника.
- •14.Смешанное произведение векторов, его св-ва. Определение смешанного произведения через координаты векторов. Определение объема параллелепипеда и прямокгольной пирамиды.
- •Геометрические свойства смешанного произведения
- •Алгебраические свойства смешанного произведения
- •Формула вычисления смешанного произведения
- •15.Линейная зависимость и независимость системы векторов. Условия и свойства линейной зависимости векторов.
- •Свойства линейно зависимых и линейно независимых векторов
- •16.Базис векторного пространства и разложение вектора по базису.
- •17.Собственный вектор и собственное значение матрицы
- •18. Линейная модель обмена. Структура матриц.
- •19. Определение квадратичной формы
- •20. Критерий Сильвестра знакоопределенности квадратичной формы. (посмотреть в тетради)
- •21. Модель Леонтьева.
- •22. Элементы аналитической геометрии на плоскости. Уравнение прямой в зависимости от параметра. Длина отрезка и деление отрезка в заданном соотношении.
- •23. Условия параллельности и перпендикулярности прямых и угол между ними. Расстояние от точки до прямой.
- •24. Кривые 2-го порядка. Парабола. Эллипс. Гипербола.
- •25. Гипербола как дробно-рациональная функция.
- •26. Уравнение плоскости и прямой в пространстве. Плоскость и прямая в пространстве
- •28. Системы линейных неравенств с двумя неизвестными
Матрица, виды матриц, действия над матрицами.
Виды матриц:
1. Прямоугольные: m и n - произвольные положительные целые числа
2. Квадратные: m=n
3. Матрица строка: m=1. Например, (1 3 5 7 ) - во многих практических задачах такая матрица называется вектором
4. Матрица столбец: n=1. Например
5. Диагональная матрица: m=n и aij=0, если i≠j. Например
6. Единичная матрица: m=n и
7. Нулевая матрица: aij=0, i=1,2,...,m
j=1,2,...,n
8. Треугольная матрица: все элементы ниже главной диагонали равны 0.
Пример.
9. Симметрическая матрица: m=n и aij=aji (т.е. на симметричных относительно главной диагонали местах стоят равные элементы), а следовательно A'=A
Например,
10. Кососимметрическая матрица: m=n и aij=-aji (т.е. на симметричных относительно главной диагонали местах стоят противоположные элементы). Следовательно, на главной диагонали стоят нули (т.к. при i=j имеем aii=-aii)
Пример.
Действия над матрицами:
1. Сложение матриц - поэлементная операция
2. Вычитание матриц - поэлементная операция
3. Произведение матрицы на число - поэлементная операция
4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)
Amk*Bkn=Cmn причем каждый элемент сij матрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B , т.е.
Покажем операцию умножения матриц на примере
5. Транспонирование матрицы А. Транспонированную матрицу обозначают AT или A'
,например
Строки и столбцы поменялись местами
Свойства операций над матрицами:
A+B=B+A
(A+B)+C=A+(B+C)
λ(A+B)=λA+λB
A(B+C)=AB+AC
(A+B)C=AC+BC
λ(AB)=(λA)B=A(λB)
A(BC)=(AB)C
(A')'=A
(λA)'=λ(A)'
(A+B)'=A'+B'
(AB)'=B'A'
Определители второго и третьего порядка (основные понятия, св-ва, вычисления)
Свойство 1. Определитель не изменяется при транспонировании, т.е.
Доказательство.
=
Замечание. Следующие свойства определителей будут формулироваться только для строк. При этом из свойства 1 следует, что теми же свойствами будут обладать и столбцы.
Свойство 2. При умножении элементов строки определителя на некоторое число весь определитель умножается на это число, т.е.
.
Доказательство.
Свойство 3. Определитель, имеющий нулевую строку, равен 0.
Доказательство этого свойства следует из свойства 2 при k = 0.
Свойство 4. Определитель, имеющий две равные строки, равен 0.
Доказательство.
Свойство 5. Определитель, две строки которого пропорциональны, равен 0.
Доказательство следует из свойств 2 и 4.
Свойство 6. При перестановке двух строк определителя он умножается на –1.
Доказательство.
Свойство 7.
Доказательство этого свойства можно провести самостоятельно, сравнив значения левой и правой частей равенства, найденные с помощью определения 1.5.
Свойство 8. Величина определителя не изменится, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и то же число.