Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ter_mekh_1-14.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
483.89 Кб
Скачать

6)Момент силы относительно оси. Зависимость между моментами силы относительно оси и относительно центра, находящегося на этой оси.

Момент силы — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Моментом силы относительно оси называют алгебраический момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения плоскостью. Момент силы относительно оси считается положительным, если проекция силы на плоскость, перпендикулярно оси (проекция силы на плоскость является вектором), стремится вращать тело вокруг положительного направления оси против часовой стрелки, и отрицательным, если она стремиться вращать тело по часовой стрелке. Момент силы, например относительно оси Оz обозначим  z  ( ).   Из определения момента силы относительно оси следует, что введённый выше алгебраический момент силы относительно точки можно считать моментом силы относительно оси, проходящей через эту точку, перпендикулярно плоскости, в которой лежат сила и моментная точка.  Момент силы относительно оси можно выразить через площадь треугольника, построенного на проекции силы  П и точке пересечения О оси с плоскостью:  Из этой формулы можно получить следующие важные свойства момента силы относительно оси. 1. Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси. 2. Момент силы относительно оси равен нулю, если линия действия силы пересекает эту ось. В этом случае линия действия силы на плоскость, перпендикулярную оси, проходит через точку пересечения оси с плоскостью и, следовательно, равно нулю плечо силы  П относительно точки О.

В обоих этих случаях ось и сила лежат в одной плоскости. Объединяя их, можно сказать, что момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости.

7) Аналитические формулы для моментов силы относительно координатных осей.

В основе способа лежит известное из векторной алгебры представление векторного произведения в виде определителя, что позволяет записать для вектора-момента силы следующее выражение

Здесь  ,  - орты координатных осей; x, у, z- координаты точки приложения силы; Fx,Fy,Fz -  проекции силы на координатные оси. Вспоминая, что в формуле разложения вектора на составляющие по координатному базису коэффициенты при ортах являются проекциями этого вектора на соответствующие оси, а в данном случае, по определению - моментами силы F относительно координатных осей, приходим к равенствам:

Полученные формулы называются аналитическими выражениями для моментов силы относительно координатных осей. Они позволяют вычислять моменты силы относительно координатных осей без предварительного построения момента относительно начала координат.

8)Пара сил. Момент пары как вектор. Эквивалентность пар. Свойства пар сил. Сложение пар сил. Условия равновесия системы пар сил. Http://kurs.Ido.Tpu.Ru/courses/TeorMex1_sem1/theme13.Html

Дадим определение пары сил.

Пара сил - это система двух равных параллельных сил, направленных в разные стороны (рис. 22).

Кратчайшее расстояние между линиями действия сил называют плечом пары h , а плоскость П, где лежит пара сил, является плоскостью пары.

Пары сил реально существуют в природе. Ярким примером являются силы, действующие на стороны рамки с током в магнитном поле. На этом физическом явлении основана работа всех электродвигателей постоянного тока.

С войства пары сил. Сформулируем, а затем докажем первое свойство.

Первое свойство. Пару сил нельзя привести к силе. Иными словами пара сил (как и сила) является самостоятельным элементом статики.

При изучении динамики мы покажем, что под действием пары сил свободное твердое тело может только поворачиваться. Следовательно, в этом параграфе мы будем изучать свойства нового самостоятельного элемента статики, под действием которого, в отличие от силы, свободное твердое тело может только поворачиваться.

Для доказательства рассмотрим сложение параллельных сил. Сложим две неравные параллельные силы, направленные в разные стороны (рис. 23). Добавляем к исходной системе сил (F1,F2) уравновешенную систему сил (Q1,Q2) ~ 0. По аксиоме параллелограмма, силы, приложенные в точках A и B, эквивалентны двум непараллельным силам R1 и R2 (рис. 23, a). Согласно следствию второй аксиомы, переносим эти силы в точку пересечения их линий действия C (рис. 23, b). Используя вторую и третью аксиомы, раскладываем силы R1 и R2 на составляющие (рис. 23, c), а затем вычитаем уравновешенную систему сил (Q1,Q2). В результате получаем, что исходная система сил эквивалентна тем же силам, но приложенным в одной точке C, то есть (F1,F2) = (F1,F2)C (рис. 23, d). По аксиоме параллелограмма эта система, а следовательно, и исходная система сил, эквивалентна одной силе или равнодействующей (рис. 23, c):

(1)

Из рисунков видим, что равнодействующая и ее линия действия CD параллельны исходным силам, а точка D лежит вне отрезка AB.

При сложении двух параллельных сил, направленных в одну сторону, получается аналогичный результат, только величина равнодействующей будет равна R* = F1 + F2, а точка D будет лежать внутри отрезка AB.

Можно распространить этот вывод и на систему из n параллельных сил, добавляя к полученной равнодействующей по одной из оставшихся сил системы. В результате мы докажем, чтосистема параллельных сил приводится к одной силе или равнодействующей. Вопрос нахождения линии действия равнодействующей будет подробно рассмотрен в теме о центре параллельных сил.

Вернемся к доказательству первого свойства пары сил. Устремим величину первой силы ко второй. При F1   F1 из выражений (1) следует, что R*   0, а по рис. 22, a видим, что AC и BCстановятся параллельны друг другу. Следовательно, пара сил не может быть приведена к силе или равнодействующей, так как равнодействующая не имеет величины, а ее линия действия не определена, потому что нельзя найти точку C. Таким образом, свойство доказано.

Второе свойство. Действие пары сил на твердое тело определяется моментом пары, который является свободным вектором, перпендикулярным плоскости пары, численно равным произведению силы на плечо пары.

Ранее мы показали, что пара сил не может быть приведена к силе, а является самостоятельным элементом статики. Выясним, как пара сил действует на твердое тело. Выберем в пространстве произвольный центр O (рис. 24) и вычислим относительно этого центра сумму моментов сил, образующих пару. Эту сумму мы назовем моментом пары. Положение точек приложения сил пары относительно центра O определим радиус-векторами r1, r2 и, учитывая, что F' = -F, получим

(2)

Строим вектор BA, который определяет положение точки A относительно B, и на рис. 24 видим, что r1 = r + BA или r1 - r = BA. Учитывая это, из выражения (2) получаем

(3)

Таким образом, действие пары сил на тело определяется ее моментом, который является мерой действия пары сил на твердое тело.

Так как центр O выбран произвольно, то момент пары не зависит от выбора центра, то есть является свободным вектором. По определению векторного произведения он перпендикулярен плоскости пары (в этой плоскости лежат перемножаемые векторы BA и F) и направлен так, что с его конца вращение тела под действием пары сил наблюдается против хода часов (как и вращение BA к F по кратчайшему угловому расстоянию). Это отражено на рис. 24. Величину момента пары найдем, определяя модуль векторного произведения в (3), учитывая (рис. 24), что BA sin(BA ^ F) = h:

(4)

Приняв за центр O последовательно точки приложения сил A и B, по формуле (2) имеем

(5)

Эта формула имеет важное значение при решении задач, когда нужно вычислять суммы моментов пар сил относительно точки.

Так как момент пары является свободным вектором, то он не имеет фиксированной точки приложения, а имеет только свой модуль и свое направление и приложить его можно в любой точке твердого тела. Это принципиальное отличие момента пары от момента силы относительно центра (точки), являющегося связанным вектором, приложенным в центре, и от скользящего вектора, примером которого является сила, приложенная к твердому телу, которую можно переносить только вдоль линии ее действия.

Следствия из второго свойства пары.

1. Действие пары на твердое тело не изменяется, если пару сил поворачивают в плоскости пары. Очевидно, что при этом момент пары не изменяется.

2. Действие пары сил на твердое тело не изменяется, если пару сил переносят в другое место плоскости пары. Это соответствует переносу момента пары, как свободного вектора, параллельно плоскости пары.

3. Действие пары сил на твердое тело не изменяется, если ее перенести в плоскость, параллельную плоскости пары. То есть момент пары, как свободный вектор, переносится перпендикулярно плоскости пары.

Эти на первый взгляд парадоксальные свойства пары сил поясним физическими примерами. Гаечный ключ одинаково действует на гайку, к каким бы граням этой гайки его не приложить - момент пары не изменяется от поворота пары сил в плоскости пары. Трансмиссионный вал передает шкиву вращающий момент независимо от места закрепления шкива на валу - момент пары сил не изменяется от ее переноса в плоскость, параллельную плоскости пары.

Моменты пар рассматриваются как векторы, когда пары сил лежат в различных плоскостях. В плоской системе сил, когда все силы и пары сил лежат в одной плоскости, моменты пар направлены перпендикулярно этой плоскости и поэтому параллельны друг другу. Естественно, что в этом случае, момент пары удобнее рассматривать как алгебраическую величину, равную

(6)

Момент пары будет положительной величиной, если пара сил стремиться повернуть тело против хода часов и отрицательной, если она поворачивает тело по ходу часов.

Эквивалентность пар сил. Две пары сил с равными моментами эквивалентны. Или (F,F') ~ (P,P') , если M(F,F') ~ M(P,P'). Эквивалентность пар сил сразу следует из свойств пары сил. Очевидно, что только при равных моментах пар сил их действие на твердое тело будет одинаковым.

Следует отметить, что силы, образующие пары могут быть не равны между собой F   P, но обе пары сил должны лежать в одной плоскости. Это замечание и понятие эквивалентности пар сил позволяют сформулировать правило трансформирования пары сил.

При трансформировании пары сил можно менять величины сил и плечо пары так, чтобы величина момента пары не изменялась, и переносить пару сил согласно следствиям из 2-го свойства.

Система пар сил.

Системой пар сил является совокупность пар сил, приложенных к одному телу.

Сложение пар сил. Система пар сил эквивалентна одной паре, момент которой равен сумме моментов пар, образующих систему:

(8)

г де M1 = M(F1,F1')M2 = M(F2,F2'), ..., Mn = M(Fn,Fn').

На рис. 25, a представлена исходная система пар сил. По второму свойству заменяем пары их моментами и переносим моменты пар, как свободные векторы, в одну произвольную точку (рис. 25, b). По правилу параллелограмма мы складываем векторы моментов пар и получаем второе выражение в (8). Одному моменту пары M соответствует одна пара сил (F,F') и M = M(F,F') (рис. 25, c).

Если все пары лежат в одной плоскости, векторное суммирование моментов пар теряет смысл. Поэтому мы используем алгебраические моменты пар сил и получаем

(9)

Равновесие системы пар. Вначале сформулируем, а затем докажем условие равновесия для системы пар сил.

Для равновесия твердого тела под действием системы пар сил необходимо и достаточно, чтобы геометрическая сумма моментов пар, образующих систему, была равна нулю:

(10)

Необходимость условия сразу следует из (8). Если M = 0, то (F,F') ~ 0 и, следовательно, ((F1,F'1), (F2,F'2), ..., (Fn,F'n)) ~ 0. Достаточность условия докажем методом от противного. Предположим, что условие (10) не выполняется и M   0, а твердое тело находится в равновесии. В этом случае система пар сил приводится к одной паре (F,F') и тело в равновесии находиться не может. Таким образом, наше предположение не верно, а условие (10) является верным, и его достаточность доказана.

Необходимым и достаточным условием равновесия системы пар, лежащих в одной плоскости, является равенство нулю алгебраической суммы моментов всех пар системы:

(11)

Таким образом, в этом параграфе мы рассмотрели пару сил, являющуюся, как и сила, самостоятельным элементом статики, изучили свойства пары сил, эквивалентность пар, сложение и условия равновесия для системы пар сил.

9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]