- •Тема 1.1. Основи хімічної термодинаміки . . . . . . . . . . . . . . . . . . . . . . .9
- •Тема 1.2. Фазова рівновага та вчення про розчини. . . . . . . . . . . . . .46
- •Тема 1.3 Електрохімія. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
- •Тема 1.1. Основи хімічної термодинаміки план
- •1. Зміст та основні поняття термодинаміки
- •2. Перше начало термодинаміки. Ентальпія
- •3. Закон гесса
- •Наслідки закону Гесса
- •Кількість енергії, що витрачається різними категоріями людей
- •4. Друге начало термодинаміки
- •5. Термодинамічні потенціали і фактори
- •Типи реакцій та умови їх протікання в залежності від δн, δs, δg
- •6. Розрахунок термодинамічних потенціалів в хімічних реакціях
- •Самостійна робота
- •Термодинамічні властивості деяких речовин
- •Термодинаміка біохімічних процесів
- •´ Контрольні запитання
- •J Тест на тему "Основи хімічної термодинаміки"
- •Тема 1.2. Фазова рівновага та вчення про розчини план:
- •1. Загальна характеристика розчинів
- •2. Розчини газів в рідинах. Закон генрі
- •Розчинність твердих речовин в рідинах
- •4. Дифузія і осмос в розчинах. Закон вант-гоффа
- •Явище осмосу. Закон вант - гоффа
- •Практичне значення осмосу
- •5. Тиск пари над розчинами. Закон рауля
- •6. Температура кристалізації і кипіння розчинів
- •Кріоскопічні і ебуліоскопічні сталі для деяких розчинників
- •7. Фазові переходи. Фазова рівновага
- •Класифікація гетерогенних систем
- •Самостійна робота
- •Задача 11
- •Розчин неелектролітів
- •Самостійна робота
- •& Тим, хто хоче знати більше розчинники, їх характеристика
- •Тема 1.3. Електрохімія електрична провідність розчинів. План
- •Предмет електрохімії
- •2. Електропровідність розчинів електролітів,
- •Молярна електропровідність деяких електролітів у водних розчинах при 298 к
- •Вимірювання електропровідності
- •3. Електродний потенціал. Рівняння нернста
- •Ряд стандартних електродних потенціалів
- •Ряд електронегативності неметалів
- •С тандартні електродні та окисно-відновні потенціали у водних розчинах при 298к
- •4. Класифікація електродів
- •Корозія металів. Види корозії. Методи захисту від корозії обладнання, що використовується в харчовій і переробній промисловості
- •Види корозії
- •Методи захисту від корозії обладнання, що використовується в харчовій і переробній промисловості
- •Нанесення металевих покриттів
- •Нанесення неметалевих покриттів
- •Електрохімічні методи захисту
- •Хімічні методи захисту
- •Застосування надчистих металів
- •Розчин електролітів Задача №15
- •Розв’язання
- •Задача №18
- •Самостійна робота Задача 20
- •Задача 21
- •Задача 22
- •& Тим, хто хоче знати більше електрохімічні елементи
- •´ Контрольні запитання:
- •Тема 1.4. Хімічна кінетика і каталіз план
- •1.1. Природа речовин, що реагують
- •1.2. Агрегатний стан речовин
- •1.3. Площа поверхні зіткнення речовин, що реагують
- •1.4. Вплив тиску
- •1.5. Концентрація реагуючих речовин
- •2. Залежність швидкості реакції від температури
- •3. Складні реакції. Ланцюгові реакції
- •Ланцюгові реакції
- •4. Фотохімічні реакції
- •Каталіз і каталізатори
- •Ферментативний каталіз
- •Самостійна робота
- •Фотохімічні реакції.
- •& Тим, хто хоче знати більше вплив температури на швидкість біологічних процесів
- •Про умови зберігання харчових продуктів
- •J тест по темі 1.4. "хімічна кінетика і каталіз “
- •Термінологічний словник
- •Література
1.1. Природа речовин, що реагують
У процесі хімічних реакцій відбуваються руйнування хімічних зв’язків, а їхня міцність впливає на швидкість цих реакцій. Відомо, що метали неоднаково поводяться в хімічних реакціях. Про це свідчить їхній ряд активності. Наприклад, швидкість реакції металів з водою залежить від активності металу. Na (активний метал) дуже енергійно взаємодіє з водою, реакція може перебігати навіть із вибухом за звичайних умов. А от цинк (менш активний метал) реагує з водою лише при нагріванні, за звичайних умов зміни не спостерігаються.
Як правило, речовини з іонними або ковалентними полярними зв’язками реагують миттєво; з малополярними зв’язками – повільніше. Це пояснює досить низьку швидкість реакцій за участю органічних речовин. Наприклад, цинк реагує з хлоридною кислотою швидше ніж з ацетатною. Швидкість технологічних процесів також залежить від природи речовин, що входять до складу продуктів харчування. Тому спостерігається різний термін часу при варінні круп, різна ступінь доведення до готовності м’яса різних тварин.
1.2. Агрегатний стан речовин
Хімічна реакція відбувається, коли зіштовхуються атоми, молекули або іони речовин, що реагують. Частота зіткнення часток речовин залежить від швидкості їхнього руху. Найбільшу швидкість частки мають у газах, меншу – у рідинах, а найменшу – у твердих речовинах.
Отже, найбільшу швидкість мають реакції між речовинами, що знаходяться в газоподібному стані.
1.3. Площа поверхні зіткнення речовин, що реагують
Гетерогенними – називаються процеси, що відбуваються на поверхні розділу фаз.
Коли однією з речовин, що реагують, є тверда речовина, реакція перебігає на її поверхні. Чим більша поверхня зіткнення речовин, що реагують, тим частіше зіштовхуються частки і тим вища швидкість хімічної реакції. Збільшення площі поверхні зіткнення речовин досягається шляхом їхнього подрібнення. Наприклад, сірником не можна підпалити поліно, а деревна тріска від нього легко спалахує. Реакція сульфатної кислоти з порошком цинку перебігає бурхливо, а з гранулами Zn набагато спокійніше.
При подрібненні твердих речовин збільшується їх загальна площа і доступ молекул іншого реагенту значно поліпшується. Загальна площа поверхні усіх часточок цинкового порошку значно перевищує площу поверхні гранули металу. Тому порошок цинку швидше взаємодіє з кислотою.
Для гетерогенних реакцій швидкіть прямопропорційна площі поверхні реагуючих речовин.
Цим пояснюються пірофорні властивості деяких матеріалів. Так, в дуже подрібненому (високодисперсному) стані здатні самоспалахувати залізо, нікель, цукор. Це слід враховувати на цукропереробних підприємствах та млинах.
1.4. Вплив тиску
При підвищенні тиску в системі, згідно з відомим законом Бойля-Маріотта, відбувається зменшення загального об’єму:
P1V1 = P2V2
і прямо пропорційно зростає концентрація реагуючих речовин. Тому для хімічної реакції:
N2(г) + 3Н2(г) = 2NH3 (г )
можна записати кінетичне рівняння -
ύ = К∙РN2 • Р3H2,
де РN2 і РH2 - парціальні тиски газів.
