
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
9.4. Понятие о следящем электроприводе
Основное отличие следящего электропривода от систем точного позиционирования состоит в постановке задачи регулирования: обеспечение следования (слежения) положения исполнительного органа механизма ' за изменяющимся по произвольному закону положением задающего органа ф'з с ошибкой, во всех режимах работы не превышающей допустимого значения. Поэтому рассмотренная выше трехконтурная система регулирования положения представляет собой следящий электропривод в тех случаях, когда замыкание электропривода, например по углу поворота исполнительной оси установки, имеет целью воспроизведение произвольно меняющегося угла поворота задающей оси, т.е. слежение исполнительной оси за движением задающей оси, с заданной точностью. При этом отработка заданного скачком угла поворота, т.е. рассмотренная выше отработка дозированных перемещений, является частным режимом работы следящего электропривода.
Воспроизведение с высокой точностью произвольных законов движения, задаваемых перемещением задающей оси 'з(t), является одной из наиболее сложных задач автоматизированного электропривода. Произвольность движения задающей оси определяет исключительное многообразие условий работы электропривода, при котором проявляется влияние существенных нели-нейностей системы, таких, как сухое трение при движении с малой знакопеременной скоростью, кинематические зазоры при движении со знакопеременным моментом двигателя и т.п. Высокие требования к точности воспроизведения угла поворота задающей оси требуют особо тщательного синтеза динамических качеств электромеханической системы, причем их удовлетворение сильно осложняется отмеченным ранее влиянием нелиней-ностей и наличием в системе упругих механических связей.
Ограничимся анализом динамической точности следящего электропривода с линейными жесткими механическими связями. Для этого получим изображение ошибки в трехконтурной системе, структурная схема которой показана на рис.9.4, с помощью общей формулы ошибки (6.19):
где W"орп - передаточная функция объекта регулирования положения по возмущению Мс(р).
Для определения этой передаточной функции представим структурную схему рис.9.4 в виде, показанном на рис.9.7, пренебрегая внутренней связью по ЭДС и принимая kоп=1. На основании этой схемы можно записать
Подставляем (9.31) в (9.30), выражаем Wpc с помощью (8.39) и учитываем, что при kоп=1 'з=3 В результате преобразований получаем
Р
ассматривая
(9.32), можно установить, что статическая
ошибка системы определяется только
действием постоянной нагрузки Мс
и не зависит от задающего сигнала.
Статическая ошибка определяется формулой
(9.27), которая вытекает из (9.32) при р=0 и
которая была уже получена из физических
представлений.
Важной оценкой динамической точности следящего электропривода является установившаяся ошибка в режиме отработки линейного нарастания задающего сигнала ф3(t)=зt3/р, которую нетрудно определить, подставив это изображение задающего сигнала в (9.32):
Рассматриваемый режим есть режим движения следящего электропривода с постоянной скоростью з, задаваемой вращением задающей оси. Полученное выражение (9.23) свидетельствует о том, что в этом режиме ошибка складывается из двух составляющих. Первая составляющая называется скоростной ошибкой фmax(1), которая пропорциональна скорости и зависит только от некомпенсируемой постоянной контура регулирования положения Tп=асатТ и от соотношения постоянных этого контура ап.
Вторая составляющая представляет собой статическую ошибку С и при данной нагрузке Мс=const зависит от тех же факторов и от модуля статической жесткости в двухконтурной статической системе регулирования скорости зс:
Передаточную функцию разомкнутой системы при k0n=1 можно представить в виде
где ky=1/апТп - коэффициент усиления разомкнутого контура регулирования положения. Учитывая (9 36), выражение скоростной ошибки (9.34) можно записать в более общем виде:
Соответственно выражение статической ошибки (9.35) имеет вид
Следовательно, при данной скорости заводки 3 уменьшение скоростной ошибки обеспечивается только увеличением коэффициента усиления разомкнутой системы ky, т.е. в данном случае выбором наименьших допустимых по критерию качества регулирования коэффициентов aп, ас и aт при данной сумме некомпенсируемых постоянных T в контуре регулирования тока. Статическая ошибка зависит как от коэффициента усиления контура регулирования положения, так и от жесткости статических механических характеристик системы при разомкнутой связи по положению В рассматриваемой системе, оптимизированной методом последовательной коррекции, жесткость зс зависит от отношения еТм/асатТ , поэтому уменьшение aп, аc и ат снижает статическую ошибку вследствие возрастания коэффициента усиления и увеличения жесткости зс В соответствии с (9.38) статическая ошибка может быть полностью устранена при использовании двукратноинтегрирующего контура регулирования скорости при ПИ-регуляторе скорости
Обратим внимание на то, что если момент нагрузки Мс содержит составляющую вязкого трения вт, то статическая ошибка в установившемся режиме движения с постоянной скоростью заводки в соответствии с (9 38) будет содержать составляющую, пропорциональную скорости и увеличивающую скоростную ошибку на значение, равное
Динамические ошибки в неустановившихся режимах движения могут дополнительно увеличиваться из-за переходных составляющих. Так, при уменьшении ап, ас и ат колебательность системы увеличивается, переходные составляющие ошибки могут возрастать, в то время как установившаяся динамическая ошибка (9.33) при этом уменьшается. Поэтому выбор ап, ас и aт должен обеспечить минимум полной динамической ошибки во всех режимах.
Для того чтобы при произвольном входном сигнале иметь возможность конкретизировать требования к динамической точности, задают максимальные расчетные значения первой и второй производных входного сигнала max и max=(d3/dt) Для расчетных режимов заводки с постоянной скоростью 3=const и с линейно возрастающей скоростью 3=3t вводятся понятия добротности по скорости
и добротности по ускорению
где фmax.доп - допустимая ошибка слежения.
Эти параметры позволяют построить граничную ЛАЧХ в области низких частот, которая обеспечивает в этой области значения динамических коэффициентов усиления L(), достаточные для ограничения ошибки допустимым значением для гармонического входного сигнала ф=фmaxsint при условии <max и <max. Построение этой ЛАЧХ, как показано на рис.9.8, сводится к построению прямой 1 с наклоном -20 дБ/дек, пересекающей ось абсцисс в точке =k, и прямой 2, пересекающей ту же ось в точке ==k. Для обеспечения требуемой динамической точности слежения ЛАЧХ разомкнутого контура регулирования положения не должна заходить в область, граница которой отмечена на рис.9.8 штриховкой
Р
ассмотренная
трехконтурная система следящего
электропривода настроена на точную
компенсацию постоянных, и ее ЛАЧХ (прямая
3) в низко- и среднечастотной области
имеет наклон -20 дБ/дек, как и прямая 1
Очевидно, эта настройка может обеспечить
требуемую точность регулирования, если
заданная добротность по скорости k
меньше частоты среза системы или равна
ей:
При настройке всех контуров на технический оптимум ап=aс=aт=2 и Т=0,01 с заданное значение k не должно превышать 12,5. На практике требуются коэффициенты добротности по скорости на порядок большие, поэтому рассмотренная система в применении к следящему электроприводу обладает ограниченными возможностями.
Вид граничной по условиям точности регулирования ЛАЧХ (отмеченной на рис.9.8 штриховкой) свидетельствует о целесообразности использования контура регулирования, настроенного на симметричный оптимум. Пусть при заданной добротности по скорости k и ускорению ke ЛАЧХ трехконтурной системы с П-регулятором положения имеет вид, показанный на рис.9.8 ломаной 3. Заменив П-регулятор положения ПИ-регулятором и подобрав параметры по симметричному оптимуму, получим
Передаточной функции (9.42) соответствует ЛАЧХ с частотой среза c=1/8T и низкочастотной асимптотой, имеющей наклон -40 дБ/дек (прямая 4 на рис.9.8). Сравнивая прямые 3 и 4, можно убедиться, что использование симметричного оптимума может обеспечивать выполнение требований к точности в случаях, когда настройка на технический оптимум дает недостаточные для этого коэффициенты усиления в области низких частот. Дополнительное увеличение динамической точности регулирования может быть достигнуто путем использования в качестве подчиненного контура регулирования астатической одноконтурной системы регулирования скорости с ПИД-регулятором скорости. Реализация такой системы существенно упрощается в тех случаях, когда постоянная Тя достаточно мала и может быть отнесена к некомпенсируемым постоянным без значительного увеличения Т. В подобных случаях тот же эффект достигается при более помехоустойчивом ПИ-регуляторе скорости.