
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
8.10. Особенности частотного регулирования скорости асинхронного электропривода
При рассмотрении вопросов частотного регулирования момента уже было отмечено, что по сравнению с системой постоянного тока, управляемой путем изменения напряжения в цепи якоря, частотное регулирование реализуется более сложно в связи с отсутствием отдельного независимого канала регулирования потока двигателя, каким является обмотка возбуждения двигателя постоянного тока. Другой особенностью является сложность измерения ряда координат асинхронного электропривода, обусловленная работой двигателя на переменном токе.
Как следствие, в замкнутых системах частотного регулирования скорости для регулирования потока и момента двигателя широко используются положительные обратные связи, компенсирующие те или иные возмущения, а также косвенные методы измерения переменных.
В тех случаях, когда высоких требований к переходным процессам пуска, реверса и торможения не предъявляется и главным является обеспечение высокой точности регулирования скорости, в системе частотного регулирования обычно предусматривается канал регулирования магнитного потока по отклонению, реализуемый в двух вариантах. В первом исполнении применяют датчики Холла, сигналы которых примерно пропорциональны магнитному потоку в воздушном зазоре двигателя, т.е. используют прямое измерение магнитного потока для осуществления отрицательной связи, поддерживающей поток на заданном уровне. Во втором исполнении прибегают к косвенному измерению магнитного потока, в основе которого лежит векторное уравнение электрического равновесия для цепи статора в осях х,у:
Выразив в нем потокосцепление через токи с помощью уравнения
получим
Н
етрудно
видеть, что уравнение (8.96) устанавливает
определенную зависимость намагничивающего
тока I
а следовательно, и результирующего
магнитного потока Ф от напряжения и
тока статора при данных параметрах
машины. Эта зависимость является
векторной и в динамике осложняется
наличием производных
и
.
Тем не менее, полагая в режимах стабилизации
потока i=const,
d
/dt=0,
с помощью современных вычислительных
устройств можно по измеренным реальным
напряжениям и токам двух фаз статора и
известной частоте 0эл
определять значения амплитуды и фазы
магнитного потока и, таким образом,
косвенным путем формировать сигнал
отрицательной связи по мгновенным
значениям потока, воздействующей на
цепь задания напряжения или тока статора.
В тех случаях, когда частотное управление должно обеспечивать не только регулирование скорости, но и формирование равномерно ускоренного характера протекания всех переходных процессов, ограничение момента при механических перегрузках и т п., система регулирования скорости должна содержать подчиненный контур регулирования момента. В простейшем случае можно использовать уже рассмотренную компенсационную систему регулирования момента (см. рис.7.20).
Схема регулирования скорости асинхронного двигателя при этом дополняется регулятором скорости PC и отрицательной обратной связью по скорости, как показано на рис.8.36,a. Структурная схема представлена на рис.8.36,б, в ней контур регулирования момента представлен передаточной функцией, соответствующей (7.66), а в передаточной функции пропорционального PC учтена малая постоянная времени Тф фильтра в цепи обратной связи по скорости. С помощью этой схемы можно записать:
Уравнение динамической механической характеристики замкнутой по скорости системы электропривода
где 0зс=U3С/k0с - скорость идеального холостого хода.
Передаточная функция динамической жесткости механической характеристики
где Т=Тэ+Tф - суммарная малая постоянная контура регулирования скорости.
Уравнение статической механической характеристики
Модуль статической жесткости
пропорционален коэффициенту обратной связи по скорости и теоретически может быть получен любого требуемого значения. Однако практически без динамической коррекции возможная жесткость механической характеристики в замкнутой системе, как было установлено в §8.5, ограничивается ростом колебательности электропривода с ростом kос.
Передаточная функция разомкнутого контура регулирования в соответствии с рис.8.36,б имеет вид
Отнесем постоянные Tф и Тэ к малым некомпенсируемым постоянным и в качестве оценки их влияния примем T=Tф+Тэ. Тогда (8.98) можно представить в виде
где T0=TM/kockPCkM.
Сравнив (8.99) с (6.31), можно убедиться, что при этих условиях передаточная функция рассматриваемого разомкнутого контура совпадает по форме с желаемой передаточной функцией при настройке контура на технический оптимум. Для получения такой настройки нужно выбрать koс из условия То=2Т.
откуда
Значения kос, соответствующие выражению (8.100), для приводов малой и средней мощности при малой постоянной времени ТM получаются небольшими, и жесткость механических характеристик в замкнутой системе невысока. При показанной на рис.8.36,в форме характеристики регулятора скорости механические характеристики подобны характеристикам электропривода постоянного тока с двухконтурной системой подчиненного регулирования тока и скорости двигателя (рис.8.36,в).
Более высокую точность регулирования скорости могут обеспечить использование ПИ-регулятора скорости и выбор параметров по настройке на симметричный оптимум.
Компенсационный принцип стабилизации магнитного потока, использованный в данной схеме, не может обеспечить высокой точности регулирования, так как параметры двигателя при работе претерпевают изменения, вызванные изменениями температуры обмоток, не остается постоянным напряжение сети и т. п. Поэтому при высоких требованиях к точности необходимо сочетание регулирования по отклонению с компенсацией возмущений.