Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ключев ТЭП.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
7.34 Mб
Скачать

8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением

Наиболее благоприятные условия регулирования скорости двигателя с независимым возбуждением обеспечиваются изменением подведенного к якорной цепи напряжения Uя. Для автоматического регулирования скорости предусматривается питание якорной цепи от индивидуального управляемого преобразователя (системы Г-Д и ТП-Д). Однако при невысоких требованиях к точности и плавности регулирования в промышленных электроприводах используются резисторные схемы включения, получившие название схем шунтирования якоря.

П отенциометрическая схема регулирования скорости двигателей с независимым возбуждением приведена на рис.8.4,а. При двигателе небольшой мощности потенциометр может быть выполнен в виде реостата с подвижным контактом, путем перемещения которого подведенное к двигателю напряжение можно изменять от 0 до Uя=Uном. Электромеханическая и механическая характеристики двигателя в этой схеме могут быть получены по аналогии с системой УП-Д, если рассматривать потенциометр как источник регулируемого напряжения с внутренней ЭДС, равной напряжению холостого хода:

и внутренним сопротивлением

Подставив (8.13) и (8.14) в (6.6), получим уравнения характеристик в потенциометрической схеме в следующем виде:

Из (8 16) следует, что при перемещении движка потенциометра скорость идеального холостого хода уменьшается пропорционально ш, а модуль жесткости статической характеристики

является переменной, зависящей от ш При ш=0 и ш=1 жесткость ш равна жесткости естественной характеристики двигателя р при питании его от бесконечно мощной сети. При промежуточных значениях ш модуль жесткости m<, причем его минимум может быть определен обычным путем. Продифференцировав знаменатель (8.17) по ш и приравняв производную нулю, нетрудно определить значение ш=0,5, при котором ш имеет минимум:

Полученный результат позволяет построить механические характеристики двигателя в потенциометрической схеме (рис.8.4,б).

Рассматривая (8.18), можно установить, что минимальная жесткость механической характеристики в потенциометрической схеме по модулю тем больше, чем меньше сопротивление потенциометра Rп, т. е. чем больше его мощность.

Так как при регулировании поток двигателя остается постоянным (Ф=Фном), допустимая нагрузка двигателя без учета изменения условий охлаждения постоянна: М=Мном=const. При такой нагрузке двигателя мощность потенциометра превышает номинальную мощность двигателя, так как определяется напряжением сети Uном и наибольшим током потенциометра: Iпmax=Iном+Iпmax>Iном. Наибольший ток шунтирующей части потенциометра Iшmax быстро увеличивается при уменьшении Rп, поэтому минимальная жесткость механических характеристик в рассматриваемой схеме ограничивается приемлемой мощностью потенциометра. Тем самым ограничивается и возможный при данных пределах изменения нагрузки и требуемой точности диапазон регулирования скорости.

Плавность регулирования при небольшой мощности двигателя, позволяющей использовать ползунковый реостат, получается достаточно высокой. Однако с возрастанием мощности двигателя эта возможность исключается и регулирование осуществляется переключением ступеней регулировочных сопротивлений Rш и Rдоб с помощью силовой коммутирующей аппаратуры. При таком регулировании принимать суммарное сопротивление потенциометра Rп=Rш+Rдоб постоянным нецелесообразно, так как сопротивления Rш и Rдоб могут регулироваться независимо. Для этого случая (8.15) и (8.16) удобно представить в виде

Следует иметь в виду, как изменяются характеристики двигателя при изменении Rш при неизменном Rдоб или наоборот. Примем сначала Rдоб=const и будем изменять в (8.19) Rш(ш).

При изменении сопротивления шунтирующего резистора от бесконечности до нуля скорость идеального холостого хода непрерывно уменьшается от 0ном до 0, а жесткость возрастает от ш2/(Rя+Rдоб) до ш=. Все эти характеристики пересекаются в одной точке, в которой ток якоря двигателя имеет значение

при скорости в режиме противовключения

Это можно установить, определив напряжение на выводах якоря двигателя при Iя=Iк1 и =к1:

П одставляя (8.22) в (8.23), убеждаемся, что в этой точке на выводах якоря напряжение равно нулю, так как ЭДС двигателя, работающего в генераторном режиме, равна падению напряжения на сопротивлении якоря. При любом сопротивлении Rш ток Iш в этой точке равен нулю, поэтому она является общей для всего рассматриваемого семейства характеристик (рис 8 5,а)

Аналогичная общая точка обнаруживается и в семействе характеристик, соответствующем Rш=const и Rдо6=var (рис.8.5,б).

Все эти характеристики пересекаются в точке, где ток якоря определяется соотношением

а скорость имеет значение

В этой точке напряжение на выводах двигателя равно напряжению сети, поэтому ток из сети не потребляется и значение Rд не сказывается на условиях работы двигателя. Графически точка IK1, K1 определяется пересечением реостатной характеристики при RЯ=Rя+Rдоб(Rш=) и естественной характеристики динамического торможения (Rш=0) (прямые 1 и 2 на рис.8.5,a).

Точка Iк2 и к2 определяется пересечением естественной характеристики двигателя 3 (Rдоб=0) и реостатной характеристики динамического торможения 4 (Rдоб=), как показано на рис.8.5,б.

Таким образом, механические характеристики в схеме шунтирования якоря двигателя с независимым возбуждением являются характеристиками двигателя, питаемого от источника регулируемого напряжения с относительно большим и изменяющимся при регулировании напряжения внутренним сопротивлением.