
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
7.6. Особенности регулирования момента и тока в системе г-д
Для реализации стандартной настройки на технический оптимум контура регулирования момента в системе Г-Д при последовательной коррекции имеются две возможности: непосредственная коррекция и введение подчиненного контура регулирования ЭДС генератора или его тока возбуждения.
Так же как и в системе ТП-Д, регулирование момента в системе Г-Д осуществляется с помощью отрицательной обратной связи по току якорной цепи. Структурная схема контура регулирования тока, учитывающая влияние внутренней связи по ЭДС двигателя в виде независимого возмущения по скорости, представлена на рис.7.18,а.
Если принять, что компенсации подлежат большая постоянная Тг и средняя Tя, то T=Tтв<0,01 с, при этом передаточная функция регулятора тока получается в виде
где
П
олучена
передаточная функция ПИД-рсгулятора.
Свойства электропривода при этом в
пределах линейности системы совпадают
с рассмотренными выше для системы УП-Д
с быстродействующим преобразователем.
Если использование ПИД-регуля-тора
нежелательно, можно отказаться от
компенсации постоянной Тя,
положив Tм=Tтв+Тя>0,01
с. Передаточная функция регулятора тока
при этом получается в виде
Полученный ПИ-регулятор удобен в реализации, но увеличение суммарной некомпенсируемой постоянной Т=TТв+Тя определяет соответствующее снижение быстродействия контура и уменьшение точности регулирования. Это ухудшение свойств контура регулирования тем более значительно, чем больше Тя. Поэтому при повышенных значениях Тя более благоприятные условия регулирования тока и момента обеспечиваются введением подчиненного контура регулирования ЭДС генератора (рис.7 18,б).
Применив уже неоднократно использованный выше метод определения передаточной функции регулятора для контура регулирования ЭДС, получим
где
Замкнутый контур регулирования ЭДС имеет передаточную функцию
Следовательно, благодаря введению подчиненного контура регулирования ЭДС передаточная функция объекта регулирования тока принимает вид
В контуре регулирования тока якоря осталась одна подлежащая компенсации постоянная Тя, но некомпенсируемая инерционность контура возросла Тт=аэТ Отсюда регулятор тока должен иметь следующую передаточную функцию
где Tит=(kот/kоэRя)aтaэT.
Таким образом, введение подчиненного контура регулирования ЭДС позволяет ограничиться применением ПИ-регуляторов. Полученная в результате коррекции передаточная функция замкнутого контура тока якоря имеет вид
При настройке на технический оптимум (aэ=aт=2) динамические свойства контура регулирования тока качественно получаются такими же, как и в системе с быстродействующим преобразователем, однако количественно быстродействие контура и точность регулирования тока и момента ухудшаются в 2 раза Сравнивая вариант одноконтурной системы с ПИ-регулятором тока (7 48) с двухконтурной, можно заключить, что при TТВ+TЯ<2TТВ быстродействие и точность регулирования в одноконтурной системе выше, чем в двухконтурной. При ТTВ+Тя>2TТВ, предпочтителен вариант двухконтурной системы, особенно в тех случаях, когда возможность ограничения максимальной ЭДС генератора представляет практический интерес
Для ограничения ЭДС генератора значением EгEгmax в структуре на рис.7.18,б достаточно ограничить выходное напряжение регулятора тока, которое является сигналом задания ЭДС генератора, значением Uзэmax
Весьма большая постоянная времени генератора Tг является важной особенностью системы Г-Д Необходимо иметь в виду, что компенсация постоянной Тг исключает эту инерционность из контура только математически Физически она в контуре регулирования присутствует, и се влияние компенсируется соответствующим форсированием напряжения возбуждения только в пределах, ограниченных предусмотренным запасом по напряжению
UBmax=UBном
Высокое быстродействие контура регулирования при стандартной настройке требует соответственно быстрых изменений ЭДС генератора Для изменения ЭДС генератора по закону ег=(dг /dt)max·t=(dг/dt)max/p к его обмотке возбуждения в соответствии с передаточной функцией необходимо приложить напряжение
Если при этом Ег<<Eгном, (7 54) можно упростить:
Этим же соотношением можно воспользоваться для определения требуемых форсировок возбуждения генератора для изменения ЭДС генератора по синусоидальному закону ег=Eг maxsint, при этом подстановка в (7.55) амплитуды производной от es дает
Уравнение (7.56) свидетельствует о том, что в связи с большим значением Тг напряжение UBном должно быстро возрастать с увеличением частоты и амплитуды колебаний ЭДС. Пренебрегая насыщением магнитной цепи генератора, с помощью (7 56) оценим требуемый запас по напряжению возбуждения на частоте среза контура регулирования тока, настроенного на технический оптимум
Следовательно, в данном режиме требуется коэффициент форсирования
При ограниченном запасе по напряжению возбудителя а пределы частот и амплитуд колебаний, в которых система Г-Д остается линейной системой, ограничены:
Если условие (7.59) не выполняется, система регулирования является нелинейной, главным образом, из-за нелинейности характеристики возбудителя. При этом все полученные выше оценки быстродействия и точности регулирования могут быть недостаточно достоверными. Поэтому при проектировании электроприводов по системе Г-Д с последовательной коррекцией контуров регулирования ЭДС, тока якоря и других координат системы необходимо проверять достаточность принятого запаса по напряжению возбудителя для реализации стандартных показателей регулирования.
С помощью уравнения электрического равновесия якорной цепи Г-Д
можно определить производную ЭДС генератора как функцию регулируемой координаты:
Зависимость iя*=f(t) при настройке на технический оптимум определяется соотношением (6.32)
Соответствующие зависимости diя*/dt=f(t) и d2iя*/dt2=f(t) могут быть получены с помощью (7.61). Подстановка этих зависимостей в (7.60) позволяет рассчитать кривую dг/dt=f(t), определить по ней (dг/dt)max и далее с помощью (7.55) вычислить требуемое максимальное напряжение возбудителя Uвmax=тр·Uв.ном
Если полной реализации возможного при настройке на технический оптимум быстродействия не требуется, можно ограничиться выбором о^р по заданному времени пуска (см. §6.3). При этом для определения динамических показателей качества и точности регулирования необходим расчет переходных процессов в системе с учетом основных нелинейностей, который целесообразно выполнять с помощью ЭВМ.