
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
7.3. Система источник тока – двигатель
Б
лагоприятные
условия для регулирования момента
двигателя постоянного тока с независимым
возбуждением обеспечиваются при питании
якорной цепи от источника тока. Схема
электропривода по системе источник
тока - двигатель (ИТ-Д) представлена на
рис.7.6. Здесь якорь двигателя обтекается
неизменным током Iя=const,
а управление электроприводом осуществляется
воздействием на цепь возбуждения путем
изменения подводимого напряжения uв=var
и соответственно тока возбуждения
Iв=var.
При неизменном токе якоря момент двигателя пропорционален потоку:
поэтому, изменяя поток двигателя, можно регулировать момент как по значению, так и по знаку. Питание двигателя от источника тока полностью исключает электромеханическую связь, так как любые изменения скорости и соответственно ЭДС двигателя компенсируются без запаздывания изменением ЭДС источника питания При этом ток нагрузки поддерживается неизменным. При Ф=const двигатель развивает постоянный момент при любых возмущениях, в том числе и при реальных пределах изменения скорости
Механические характеристики для различных значений потока двигателя в пределах от -ФНОМ до +ФНОМ показаны на рис.7.7.
Рассматривая их, можно установить, что электропривод по системе ИТ-Д обладает свойствами полностью управляемого источника момента, обеспечивающего при Ф=var точное и плавное регулирование момента в пределах от - Мном до +МНОМ как в двигательном, так и в тормозном режимах при любом направлении скорости.
З
аметим,
что для получения знакопеременного
момента в данном случае не требуется
изменения направления тока якоря,
поэтому источник тока может обладать
односторонней проводимостью. Эти условия
определяют минимальные габариты
управляемого вентильного преобразователя,
на базе которого может быть реализован
источник тока, например нереверсивного
тиристор-ного преобразователя, замкнутого
быстродействующей обратной связью по
току. Использование управляемого
преобразователя позволяет расширить
диапазон регулирования момента путем
увеличения тока якоря на отдельных
этапах работы электропривода до значений,
допустимых по условиям коммутации.
Однако наиболее простые схемные решения с высокими показателями качества регулирования момента получаются при использовании параметрических источников тока, принцип действия которых основан на явлении резонанса в цепи переменного тока, содержащей индуктивные и емкостные элементы.
Известен ряд схем подобных преобразователей; наиболее распространенный вариант трехфазной схемы источника тока для питания двигателя постоянного тока показан на рис.7.8. Данная схема при определенном выборе параметров обеспечивает стабилизацию тока нагрузки в широких пределах изменения противо-ЭДС двигателя, ограничиваемых только линейностью и допустимым током и напряжением ее элементов, при этом благодаря симметрии схемы в установившихся режимах работы можно ограничиться рассмотрением работы одной фазы. Ток нагрузки одной фазы при принятых на схеме направлениях выразится так:
Токи реактивных элементов схемы определяются известными соотношениями:
Следовательно,
При хс=xl=х соотношение (7.19) принимает вид
где Uл=Uc+UL - линейное напряжение питающей сети.
Так как выпрямленный ток Id пропорционален эффективному значению тока I2, из (7.20) со всей очевидностью вытекает, что при идеальных линейных реактивных элементах ток якоря двигателя не зависит от противоЭДС двигателя и сопротивления цепи нагрузки и при Uл=const является постоянным: Iя=Id=kсхI2=const.
Индуктивно-емкостный преобразователь обладает высоким КПД и коэффициентом мощности, близким к единице. Однако наличие неуправляемого выпрямителя исключает возможность рекуперации энергии в сеть при тормозных режимах работы двигателя, что снижает управляемость привода. Зона поддержания момента постоянным при этом ограничивается областью двигательного режима и областью тормозного режима противовключе-ния, заключенной между осью абсцисс и характеристикой динамического торможения двигателя, соответствующей данному значению потока Ф и расширяющейся по мере ослабления поля.
Граничное значение скорости, при котором реверсивный источник тока переходит в режим рекуперации энергии, определяется соотношением
Г
иперболические
зависимости гp=f(М),
соответствующие (7.21), показаны на рис 7
7. При |||гр|
во втором и четвертом квадратах напряжение
на выходе нереверсивного источника
тока (рис.7.8) равно нулю и при дальнейшем
увеличении ЭДС ток возрастает в
соответствии с характеристикой
динамического торможения. Как следствие,
при |||гр|
механические характеристики при тех
же значениях потока имеют вид, показанный
на рис.7.7 штриховыми прямыми 1-4.
Из (7.21) следует, что ограничение пределов, в которых момент поддерживается постоянным, в рассмотренной схеме можно практически устранить введением в цепь якоря постоянно включенного или вводимого на время торможения дополнительного резистора Rя доб.