
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
7.2. Реостатное регулирование момента
Значения момента М и скорости при данной нагрузке Мс на каждом этапе работы электропривода определяются его механической характеристикой. Изменяя параметры и воздействия, от которых зависит механическая характеристика, можно изменять в требуемом направлении момент, развиваемый двигателем при данной скорости, и таким образом регулировать момент электропривода, а также связанные с ним ток силовой цепи и ускорение движущихся масс системы.
Анализируя уравнение статической механической характеристики обобщенного двигателя с линейной механической характеристикой
М=(0-), (7.1)
можно заключить, что при данных параметрах отклонения момента от требуемого значения тем больше, чем выше модуль жесткости . Иными словами, при регулировании момента электромеханическая связь является сильным возмущением, и с точки зрения регулирования момента наиболее эффективны изменения параметров, позволяющих неограниченно уменьшать модуль статической жесткости . Таким параметром является сопротивление якорной (роторной) цепи двигателя.
Схемы реостатного регулирования момента и тока представлены на рис.7.1,а и б. На рис.7.1,е построены естественная характеристика М=f() (прямая 1) и реостатная характеристика 2, соответствующая определенному добавочному резистору в силовой цепи. Точность регулирования момента при характеристике 2 определяется при заданных пределах изменения скорости электропривода max=max-min соотношением
Следовательно, при этих условиях относительная точность регулирования момента остается при увеличении Rдоб неизменной, а абсолютные ошибки уменьшаются.
Практически требуется при широких пределах изменения скорости (пуск, реверс) поддерживать изменения момента и тока в заданных пределах от Мmаx=М1 до Мmin=М2 (Imax=I1, Imin=I2).
Для выполнения этого условия требуется ступенчатое или плавное изменение /?доб по мере изменения скорости.
Н
еобходимый
закон изменения сопротивления R=Rдв+Rдоб,
обеспечивающий постоянство момента и
тока при широких пределах изменения
скорости, определяем с помощью (7.1),
учитывая, что
где Rе - суммарное сопротивление силовой цепи на естественной характеристике; Rи- то же при введении Rдоб, при этом
откуда при М=М,=const
С
ледовательно,
для поддержания момента постоянным
необходимо увеличивать сопротивление
силовой цепи в линейной зависимости от
скорости по мере ее снижения. Характеристика
Rи=f()
при М=М1=const
(прямая 1), естественная механическая
характеристика (прямая 2) и характеристика
М1=const
(прямая 5) построены для двигателя с
линейной механической характеристикой
на рис.7.2,а. Там же показаны аналогичные
характеристики при М=М2=const
(соответственно 4 и 5).
Аналогичные характеристики справедливы и для двигателя с последовательным возбуждением для токов якоря I1=const и I2=const (рис.7.2,б).
Графики на рис.7.2 позволяют наглядно оценивать число ступеней регулировочного резистора Rдоб, необходимое для поддержания момента и тока в заданных пределах во время пуска электропривода. Неизменное сопротивление Rи=R1=const обеспечивает поддержание момента в пределах М2<М<М1 при изменениях скорости от 0 до 1 (прямые 7 и 8). При дальнейшем увеличении скорости >1 выводится первая ступень резистора R1 и суммарное сопротивление уменьшается до Rи=R2 (прямые 9 и 6) и т. д.
Зависимости Rи=f() при М=const (I=const) используются для расчета пусковых сопротивлений, особенно для двигателей с последовательным возбуждением. Значения ступеней сопротивления определяются, как показано на рис.7.2. Одинаковость бросков тока при переключениях Iя=I1 при этом обеспечивается подбором значения I2(М2). Диапазон реостатного регулирования момента и тока ограничен сверху перегрузочной способностью двигателя, а пределы изменения скорости, в которых можно получить заданную точность регулирования, уменьшаются с ростом р, т. е. по мере уменьшения Rдоб. Плавность реостатного регулирования момента и тока в разомкнутой системе невелика. В связи с необходимостью переключений в силовой цепи двигателя получение большего числа ступеней реостата связано с увеличением габаритов коммутирующего устройства. Однако имеются примеры, когда при высокой требуемой точности регулирования момента в переходных процессах пуска и торможения предусматривают значительное число ступеней реостата и соответствующее увеличение размеров и стоимости станций управления. При этом увеличение габаритов и стоимости станций управления окупается простотой и надежностью данного способа регулирования момента. Высокую плавность реостатного регулирования момента обеспечивают способы автоматического регулирования сопротивления Rдоб в целях поддержания момента. В качестве примера на рис.7.3 представлена функциональная схема релейного автоматического регулирования тока ротора и момента асинхронного двигателя.
В
этой схеме в цепь ротора введен выпрямитель
В, добавочный резистор Rдоб
включен в цепь выпрямленного тока с
последовательно включенным сглаживающим
реактором Р. Коммутация добавочного
резистора производится с помощью
вентильного ключа ТК, закрытое и открытое
состояния которого определяются выходным
напряжением релейного элемента РЭ. На
вход релейного элемента подается сигнал,
пропорциональный разности задающего
напряжения uзт
и напряжения обратной связи по току uот
Характеристика релейного элемента приведена на рис.7.3,б: переход от открытого состояния ключа к закрытому осуществляется при сигнале на входе uвх=U3, обратное переключение - при uвх=U0. Как показано на рисунке, эти переключения соответствуют значениям тока
Для анализа электромагнитных переходных процессов, протекающих в схеме, можно воспользоваться схемой замещения, приведенной к цепи выпрямленного тока ротора рис.7.4). Здесь в цепь выпрямленного тока введено сопротивление R'x, учитывающее снижение среднего выпрямленного напряжения, обусловленное коммутацией токов фаз:
а также приведенные к цепи выпрямленного тока активные сопротивления двух фаз статора 2R'1s, ротора 2R2, сглаживающего реактора Rcp, а также его индуктивность Lcp. Сопротивление Rдоб в соответствии со схемой на рис.7.3 шунтировано тиристорным ключом ТК.
Если пренебречь временем переключения ключа, процессы изменения выпрямленного тока при переключениях сопротивления Rдоб описываются для открытого состояния ключа уравнением
а при закрытом ключе
г
де
Lcp-
индуктивносгь
реактора;
эквивалентное сопротивление.
При принятом допущении начальный ток при закрытом состоянии ключа равен Iнач з, а при открытом Iнач о. Изменения тока определяются решениями (7.6) и (7.7):
где t1 - время, когда ido=Iначз;
Зависимость выпрямленного тока от времени, определяемая (7.8-7.11), для конкретного значения s и представлена на рис.7.5,я. На участке 0<t<t1 ключ ТК открыт, и ток изменяется от начального значения, стремясь к установившемуся Ido, но через время t1 достигается значение id=Iначз, и ключ ТК закрывается. Период коммутации Тк можно определить, подставив в (7.8) значения id=Iконо=Iначз и t=t1, а в (7.9)- id=Iконз=Iначо и t=TK-t1.
Решив полученные уравнения, и с их помощью получим
Из (7.12) следует, что частота коммутации тока fк=1/Тк является величиной переменной. При увеличении скорости и уменьшении скольжения s ток Idо уменьшается до значения Iнач 3, частота коммутации становится равной нулю, ключ ТК остается в открытом состоянии, и двигатель работает на естественной характеристике 1 (рис.7.5,б). При уменьшении скорости и возрастании s ток Id3 увеличивается до значения Iнач 0, возрастает до бесконечности время закрытого состояния ключа Tк-t1 и двигатель работает на реостатной характеристике 2.
При промежуточных значениях скорости и скольжения частота коммутаций велика, колебания тока при высоком коэффициенте возврата релейного элемента незначительны. Пренебрегая пульсациями тока, можно принять Id=Id.ср и определить выпрямленное напряжение:
потери в роторной цепи двигателя
а
затем из условия
получить приближенную формулу для электромагнитного момента
При Uзт=Uзт1=const Idcp=Id cp1=const и М=М1=const (прямая 3 на рис.7.5,б). Задавая другие значения Uзт=const, можно получить ряд неизменных значений момента в пределах изменения скорости от характеристики 1 до характеристики 2 (Uзт2, Uзт3 соответствуют моменты М2, М3 и характеристики 4, 5).
Чем выше чувствительность релейного элемента, тем выше точность регулирования тока. Однако при этом возрастает максимальная частота fк=1/Tк. Известно, что возможная частота коммутации тиристорного (транзисторного) ключа ограничена, чем ограничивается и реальная точность релейного регулирования момента и тока двигателя.