
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
6.4. Система тиристорный преобразователь-двигатель
В силу отмеченных выше недостатков электромашинного преобразовательного агрегата на всех этапах развития электропривода много внимания уделялось поиску возможностей замены электромашинных преобразователей статическими вентильными преобразователями. В свое время получила некоторое распространение система управляемый ртутный выпрямитель - двигатель (УРВ-Д). Однако особенности ртутных вентилей - значительное падение напряжения в дуге, большие габариты, сложность эксплуатации, значительная мощность и несовершенство системы сеточного управления - не позволили этой системе успешно конкурировать с системой Г-Д Эта задача получила успешное решение только после создания полупроводниковых кремниевых вентилей и совершенных систем импульсно-фазово-го (СИФУ) управления на базе микроэлектроники, которые позволили разработать тиристорные преобразователи с высокими техническими показателями.
Схема системы ТП-Д представлена на рис.6.10,а. Двигатель постоянного тока Д получает питание от тиристорного преобразователя ТП, который преобразует напряжение сети переменного тока Uc в выпрямленное напряжение Uя, приложенное к цепи якоря двигателя. Для сглаживания пульсаций тока в цепь якоря введен сглаживающий реактор Р. Выпрямленное напряжение Uя зависит от угла регулирования а, противоЭДС нагрузки, тока нагрузки, падений напряжения на элементах силовой цепи преобразователя, и внешние характеристики преобразователя UTП=UЯ=f(Iя, Е) при =const имеют сложный нелинейный вид.
Внешняя характеристика тиристорного преобразователя близка к линейной только при непрерывном токе нагрузки. При этом процессы в цепи выпрямленного тока определяются средними значениями напряжения и тока, что позволяет без большой погрешности представить преобразователь в качестве источника питания с ЭДС Еп и эквивалентным внутренним сопротивлением Rп экв. Значения Еп в этом режиме однозначно определяются утлом регулирования а и при линейной характеристике СИФУ зависимость а показана En=f(U) на рис.6.10,б (кривая 1) При замене реальной характеристики линеаризованной как динамическое звено системы электропривода тиристорный преобразователь в режиме непрерывного тока описывается уравнением
где kn=En/Uy=const; Tn - малая постоянная, учитывающая дискретность, запаздывание и наличие фильтров в системе фазоим-пульсного управления.
У
равнение
электрического равновесия для якорной
цепи, записанное в операторной форме,
в этом режиме аналогично (6.7) для системы
Г-Д:
где RЯ=Rпэкв+Rядв - суммарное сопротивление якорной цепи ТП-Д; Rп.экв=Rк+Rт+Rр+Rвср - эквивалентное сопротивление преобразователя, Rк=mхт/2 - сопротивление, учитывающее снижение выпрямленного напряжения из-за процессов коммутации токов вентилями преобразователя; Rт, XT – приведенные ко вторичной цепи активное и индуктивное сопротивления рассеяния фазы трансформатора; m - число фаз выпрямления; R - сопротивление обмотки сглаживающего реактора Р; RK-усредненное сопротивление п вентилей, по которым протекает ток Iном.
С помощью (6.15) при Ф=Фном получим уравнение механической характеристики:
где
Следовательно, в режиме непрерывного тока механические характеристики электропривода в системе ТП-Д при принятых допущениях аналогичны системе Г-Д. Статические характеристики, соответствующие (6 16) при р=0, показаны на рис 6.10,в.
Реальные статические механические характеристики могут отличаться от представленных на рис.6.10,в. Если в системе используется реверсивный тиристорный преобразователь с совместным согласованным управлением комплектами вентилей, характеристики могут несколько отличаться в зоне перехода от двигательного режима к режиму рекуперации вследствие неточности согласования характеристик управления комплектами вентилей (при Uy=0, >90 °).
При раздельном управлении комплектами вентилей в области малых нагрузок ток становится прерывистым, и это существенно меняет характеристики. При U=0 и =90 ° среднее значение Eп становится не равным нулю и увеличивается по мере уменьшения интервала проводимости. Для Iя=0 зависимость Eп=f(Uу) при p=0 приобретает вид кривых 2 и 3. В зоне прерывистых токов искажаются и механические характеристики, как показано на рис.6.10,в для естественной характеристики 1 штриховыми линиями 2 и 3.
Наиболее существенные особенности в систему ТП-Д вносит использование нереверсивного тиристорного преобразователя. При этом система является неполноуправляемой, ток якоря может протекать только в одном направлении. Соответственно механические характеристики во втором и третьем квадрантах не существуют.
Учет особенностей, вносимых различными тиристорными преобразователями, при проектировании электропривода имеет важное практическое значение Ему уделяется главное внимание в курсе «Системы управления электропривода» при изучении свойств и методов построения и расчета различных систем ТП-Д. В данном курсе для выявления общих закономерностей регулируемого электропривода предполагается работа системы ТП-Д при непрерывном токе и используются уравнения (6.14)-(6.16).
Структурные схемы системы ТП-Д, соответствующие этим уравнениям и уравнению движения электропривода при жестких механических связях, представлены на рис.6.11,а и б. При составлении схемы на рис.6.11,б уравнение (6.14) представлено в виде
г
де
Система ТП-Д отличается весьма высоким быстродействием преобразователя. Постоянная времени Тп при полупроводниковой СИФУ не превосходит 0,01 с. Соответственно возможности создания быстродействующих электроприводов при переходе к системе ТП-Д существенно расширяются.
Оценим экономичность системы ТП-Д в сравнении с системой Г-Д. При использовании нереверсивного преобразователя установленная мощность системы ТП-Д составляет 2Рдв, т.е. меньше, чем для системы Г-Д. Однако при этом система ТП-Д имеет ограниченные технические возможности. В сравнимом варианте использования реверсивного преобразователя установленные мощности систем ТП-Д и Г-Д примерно одинаковы. Однако преимущества статического преобразователя перед вращающимся при этом говорят в пользу системы ТПД.
Важным достоинством системы ТП-Д является ее высокий КПД. Потери энергии в тиристорах при протекании номинального тока составляют 1-2% номинальной мощности привода. Поэтому даже с учетом потерь в реакторе и трансформаторе КПД преобразователя при мощности, составляющей десятки киловатт, достаточно высок.
Н
едостатками
тиристорного преобразователя являются
изменяющийся в широких пределах cos
ф, равный примерно cos
,
и значительные искажения формы
потребляемого из сети тока. Для повышения
коэффициента мощности применяют
регулируемые фильтрокомпенсирующие
устройства Однако введение этих устройств
ухудшает в 1,5-2 раза массогабаритные
показатели системы ТП-Д и увеличивает
ее стоимость.