
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
5.4. Нагревание и охлаждение двигателей
Потери энергии реализуются в виде тепла и вызывают нагревание тех частей двигателя, в которых выделяются, т. е. обмоток, коллектора, магнитопровода. Возрастание температуры этих частей благодаря теплопроводности вызывает передачу тепла остальным частям двигателя - идет процесс нагревания сложного неоднородного тела двигателя.
При превышении температурой двигателя температуры окружающей среды начинается процесс теплоотдачи в окружающую среду, интенсивность которого увеличивается пропорционально разности температур. Процесс нагревания заканчивается при температуре двигателя, когда все тепло, выделяющееся в двигателе, отдается в окружающую среду.
Отключение двигателя от сети прекращает тепловыделение в двигателе и наступает процесс постепенного отвода запасенного тепла в окружающую среду - идет процесс охлаждения двигателя, который прекращается после снижения температуры всех егс частей до температуры окружающей среды.
Анализ процессов нагревания и охлаждения существенно осложняется неоднородностью двигателя, концентрацией тепловыделения в его отдельных частях, и тепловой инерцией процессов нагревания, охлаждения и внутренней теплопередачи. Поэтому в инженерной практике используют упрощенную тепловую модель двигателя как нагреваемого тела, которая основана на ряде допущений. Наиболее существенными из них являются рассмотрение двигателя как однородной массы с бесконечно большой внутренней теплопроводностью; предположение пропорциональности теплоотдачи разности температур двигателя и окружающей среды; неучет изменений тепловыделения вследствие изменений сопротивления обмоток в процессах нагревания и охлаждения. С учетом сказанного уравнение теплового баланса двигателя можно записать так:
где А - коэффициент теплоотдачи, Вт/°С; С - теплоемкость двигателя, Дж/°С, =t°s- t°0 - превышение температуры двигателя над температурой окружающей среды, °С.
Здесь левая часть равенства - количество энергии, выделяющееся в двигателе за время dt; первый член правой части - количество тепла, отдаваемое за то же время в окружающую среду второй член правой части - часть тепла, за то же время поглощенная массой двигателя и увеличившая температуру двигателя на d. Разделив (5.26) на A dt, получим дифференциальное уравнение нагревания двигателя:
где Тн=С/А - постоянная нагревания, с.
В установившемся режиме все тепло, выделяющееся в двигателе, отдается в окружающую среду
Отсюда
Корень характеристического уравнения р1=-1/Тн, решение (5.27) записывается в виде:
Так как при t=0, нач, В=нач-уст:
Зависимость =f(t) представлена на рис.5.6,а. Там же показана кривая t0=f(t), отличающаяся от =f(t) на значение постоянной температуры окружающей среды: t°=+t0ос. Общее время переходного процесса нагревания двигателя составляет (3-4)TН. Значения Тн изменяются в широких пределах: для двигателей небольшой мощности Тн составляет десятки минут, для мощных двигателей возрастает до нескольких часов.
При отключении двигателя от сети в процессе охлаждения двигателя его превышение температуры изменяется по закону:
Длительность процессов охлаждения составляет (3-4)TОХЛ, причем существенно зависит от условий охлаждения двигателя. Если двигатель имеет самовентиляцию, т. е. охлаждается вентилятором, установленным на его валу, то при отключении скорости двигателя и вентилятора становятся равными нулю, движение охлаждающего воздуха снижается до уровня, определяемого естественной вентиляцией. При этом Аохл< Ан, Тохл> Тн, время охлаждения существенно возрастает. Процессы нагревания и охлаждения такого двигателя представлены на рис.5.6,б. Для двигателей с независимой вентиляцией, осуществляемой дополнительным двигателем, постоянно вращающим вентилятор, Аохл=Ан, Тохл=Тн. При этом продолжительность процессов нагревания и охлаждения двигателя одинакова.
Рассмотренные процессы соответствуют РМ.гp=const, т. е. продолжительной работе двигателя с постоянной нагрузкой на валу и с постоянной скоростью. Это частный случай, характерный для значительной группы электроприводов конкретных производственных механизмов Для шипокого класса электроприводов характерна работа с переменной нагрузкой на валу, с частыми пусками и торможениями двигателя. Для таких механизмов тепловые процессы в двигателе протекают при изменяющемся во времени тепловыделении. Для расчета процессов нагревания и охлаждения при этих условиях необходимо определение закона изменения во времени потерь энергии, выделяющихся в двигателе, следовательно, решение уравнения (5.27) должно производиться при переменной правой части PДВ.ГР=f(t). Определение этой зависимости производится на основе так называемых нагрузочных диаграмм электропривода.
Рис.5.6 Тепловые переходные процессы