
- •1.2. Расчетные схемы механической части электропривода
- •1.3. Типовые статические нагрузки электропривода
- •1.4. Уравнения движения электропривода
- •1.5. Механическая часть электропривода как объект управления
- •1.6. Механические переходные процессы электропривода
- •1.7. Динамические нагрузки электропривода
- •1.8 Контрольные вопросы к гл. 1
- •Глава вторая Математическое описание динамических процессов электромеханического преобразования энергии
- •2.1. Общие сведения
- •2.2. Обобщенная электрическая машина.
- •2.3. Электромеханическая связь электропривода и ее характеристики
- •2.4. Линейные преобразования уравнений механической характеристики обобщенной машины
- •2.5. Фазные преобразования переменных
- •2.6. Структура и характеристики линеаризованного электромеханического преобразователя
- •2.7. Режимы преобразования энергии и ограничения, накладываемые на их протекание
- •2.8. Контрольные вопросы к гл. 2
- •Глава третья Электромеханические свойства двигателей
- •3.1. Общие сведения
- •3.2. Математическое описание процессов преобразования энергии в двигателе постоянного тока с независимым возбуждением
- •3.3. Естественные характеристики двигателя с независимым возбуждением
- •3.4. Искусственные статические характеристики и режимы работы двигателя с независимым возбуждением
- •3.5. Динамические свойства электромеханического преобразователя с независимым возбуждением
- •3.6. Математическое описание процессов электромеханического преобразования энергии в двигателе с последовательным возбуждением
- •3.7. Статические характеристики двигателя с последовательным возбуждением
- •3.8. Динамические свойства электромеханического преобразователя с последовательным возбуждением
- •3.9. Особенности статических характеристик двигателя со смешанным возбуждением
- •3.10. Математическое описание процессов электромеханического преобразования энергии в асинхронном двигателе
- •3.11. Статические характеристики асинхронных двигателей
- •3.12. Динамические свойства асинхронного электромеханического преобразователя при питании от источника напряжения
- •3.13. Статические характеристики и динамические свойства асинхронного электромеханического преобразователя при питании от источника тока
- •3.14. Режим динамического торможения асинхронного двигателя
- •3.15. Электромеханические свойства синхронных двигателей
- •3.16. Шаговый режим работы синхронного электромеханического преобразователя
- •3.17. Контрольные вопросы к гл. 3
- •Динамика обобщенной разомкнутой электромеханической системы
- •4.1. Общие сведения
- •4.2. Математическое описание и структурные схемы разомкнутых электромеханических систем
- •4.3. Обобщенная электромеханическая система с линеаризованной механической характеристикой
- •4.4. Динамические свойства электропривода с линейной механической характеристикой при жестких механических связях
- •4.5. Устойчивость статического режима работы электропривода
- •4.6. Понятие о демпфировании электроприводом упругих механических колебаний
- •4.7. Переходные процессы электропривода и методы их анализа
- •4.10. Переходные процессы электропривода с асинхронным короткозамкнутым двигателем
- •4.11. Динамика электропривода с синхронным двигателем
- •4.12. Особенности многодвигательного электропривода
- •4.13 Контрольные вопросы к гл. 4
- •Основы выбора мощности электропривода
- •5.1. Общие сведения
- •5.2. Потери энергии в установившихся режимах работы электропривода
- •5.3. Потери энергии в переходных процессах работы электропривода
- •5.4. Нагревание и охлаждение двигателей
- •5.5. Нагрузочные диаграммы электропривода
- •5.6. Номинальные режимы работы двигателей
- •5.7. Методы эквивалентирования режимов работы двигателей по нагреву
- •5.8. Понятие о допустимой частоте включений асинхронных двигателей с короткозамкнутым ротором
- •5.9. Контрольные вопросы
- •Глава шестая Регулирование координат электропривода
- •6.1. Общие сведения
- •6.2. Основные показатели способов регулирования координат электропривода
- •6.3. Система генератор-двигатель
- •6.4. Система тиристорный преобразователь-двигатель
- •6.5. Система преобразователь частоты - асинхронный двигатель
- •6.6. Обобщенная система управляемый преобразователь-двигатель
- •6.7. Связь показателей регулирования с лачх разомкнутого контура регулирования
- •6.8. Стандартные настройки регулируемого электропривода
- •6. 9. Контрольные вопросы к гл.6
- •Регулирование момента (тока) электропривода
- •7.1. Общие сведения
- •7.2. Реостатное регулирование момента
- •7.3. Система источник тока – двигатель
- •7.4. Автоматическое регулирование момента в системе уп-д
- •7.5. Последовательная коррекция контура регулирования момента в системе уп – д
- •7.6. Особенности регулирования момента и тока в системе г-д
- •7.7. Частотное регулирование момента асинхронного электропривода
- •7.8. Влияние отрицательной связи по моменту (току) на динамику упругой электромеханической системы
- •7.9. Контрольные вопросы к гл. 7
- •Регулирование скорости электропривода
- •8.1. Общие сведения
- •8.2. Реостатное регулирование скорости
- •8.3. Схемы шунтирования якоря двигателя постоянного тока с независимым возбуждением
- •8.4. Схемы шунтирования якоря двигателя постоянного тока с последовательным возбуждением
- •8.5. Автоматическое регулирование скорости в системе уп-д
- •8.6. Свойства электропривода при настройке контура регулирования скорости на технический оптимум.
- •8.7. Свойства электропривода при настройке контура регулирования скорости на симметричный оптимум
- •8.8. Регулирование скорости двигателя постоянного тока с независимым возбуждением изменением магнитного потока
- •8.9. Способы регулирования скорости асинхронного электропривода
- •8.10. Особенности частотного регулирования скорости асинхронного электропривода
- •8.11. Принцип ориентирования по полю двигателя при частотном управлении
- •8.12. Каскадные схемы регулирования скорости асинхронного электропривода
- •8.13. Каскады с однозонным регулированием скорости
- •8.14. Оптимизация регулируемого электропривода с упругими связями по критерию минимума колебательности
- •8.15. Контрольные вопросы к гл. 8
- •Регулирование положения
- •9.1. Общие сведения
- •9.2. Точный останов электропривода
- •9.3. Автоматическое регулирование положения по отклонению
- •9.4. Понятие о следящем электроприводе
- •9.5. Контрольные вопросы к гл. 9
- •Основы выбора системы электропривода
- •10.1. Общие сведения
- •10.2. Энергетическая эффективность электропривода
- •10.3 Особенности энергетики вентильных электроприводов
- •10.4. Надежность регулируемого электропривода
- •10.5. Контрольные вопросы к гл. 10
3.17. Контрольные вопросы к гл. 3
1. Оцените влияние на механическую характеристику двигателя постоянного тока с независимым возбуждением изменений его температуры.
2. В каких случаях целесообразно использовать двигатель с последовательным или смешанным возбуждением?
3. Сравните влияние размагничивающего действия ротора асинхронного двигателя в режиме динамического торможения при Iэкв=Iном и Iэкв=5·Iном.
4. Как влияет насыщение магнитной цепи асинхронного двигателя при питании от источника тока на параметры динамической жесткости линеаризованной механической характеристики?
5. Чем отличается шаговый двигатель от синхронного двигателя?
6. Как влияет явнополюсность на угловую характеристику синхронного двигателя?
7 Проанализируйте причины, по которым ограничивается перегрузочная способность различных двигателей.
8 Как влияет реакция якоря двигателя постоянного тока с независимым возбуждением на его перегрузочную способность?
Глава четвертая
Динамика обобщенной разомкнутой электромеханической системы
4.1. Общие сведения
В предшествующих главах свойства механической части электропривода, с одной стороны, и электромеханического преобразователя - с другой, рассматривались обособленно от электромеханической системы в целом, составными частями которой они являются. Такое рассмотрение позволило выявить особенности механической части как динамического объекта, приводимого в движение и управляемого электромагнитным моментом двигателя без учета свойств применяемого двигателя. Этот же подход позволил рассмотреть важнейшие характеристики процессов электромеханического преобразования энергии в различных двигателях, проанализировать динамические особенности этих процессов также без непосредственного учета конкретных данных механической части электропривода. Полученный материал позволяет приступить к изучению взаимодействия электромеханического преобразователя с приводимой в движение механической частью в единой электромеханической системе.
Задачей данной главы является изучение динамических свойств разомкнутых электромеханических систем, рассматриваемых как объект управления. В практике современного электропривода значительное место занимают разомкнутые системы электропривода с релейно-контакторным управлением. Изучение материалов данной главы должно дать достаточные представления о характере переходных процессов электроприводов, о колебательности электромеханических систем, о расхождениях между статическими и динамическими характеристиками при изменениях нагрузки электропривода.
Эти же динамические особенности, а также передаточные функции и частотные характеристики электропривода по управлению и возмущению имеют основополагающее значение для анализа и синтеза замкнутых систем автоматического регулирования координат электромеханической системы. Из теории автоматического управления известно, что динамические свойства замкнутых систем определяются свойствами разомкнутой системы, ее передаточными функциями и частотными характеристиками. Знание свойств объекта необходимо при синтезе замкнутых систем регулируемых электроприводов, обладающих требуемым быстродействием, колебательностью и точностью отработки заданных режимов.
В результате изучения материалов данной главы необходимо знать математическое описание динамики и структурные схемы электромеханических систем, уметь с его помощью анализировать динамические свойства различных электроприводов, пользуясь частотным методом теории управления, классическим методом решения линейных дифференциальных уравнений, а также современной вычислительной техникой. При пользовании линеаризованными моделями электромеханических систем необходимо помнить о присущих реальным системам нелинейностях и уметь оценивать влияние наиболее существенных нелинейностей на динамические свойства и характеристики электроприводов.
Как установлено, в общем случае механическая часть электропривода обладает свойствами весьма слабо демпфированного колебательного звена. Необходимо уметь анализировать особенности взаимодействия электромеханического преобразователя с упругой механической системой, правильно оценивать влияние электрических параметров на колебательность, точность, динамические нагрузки электроприводов с упругими механическими связями. Без правильного понимания эффекта демпфирования упругих механических колебаний электроприводом, без умелого использования этого явления успешно решать наиболее сложные задачи современного автоматизированного электропривода практически невозможно. Первые представления об этом эффекте закладываются в данной главе и развиваются в дальнейшем изложении и в других специальных дисциплинах.
Для успешного освоения сложных вопросов динамики разомкнутых систем электропривода перед изучением данного материала необходимо проверить знание ряда конкретных вопросов из предшествующих учебных дисциплин. К их числу относятся математические методы решения линейных и нелинейных дифференциальных уравнений, корневые и частотные оценки колебательности динамических систем, свойства реального колебательного звена, изученные в теории управления.
В результате изучения должны быть получены практические навыки расчета частотных характеристик и переходных процессов разомкнутых электромеханических систем. Приобретение и развитие этих навыков должны обеспечиваться практическими занятиями по курсу и самостоятельной работой студентов при выполнении курсовой работы и изучении примеров расчета.