
- •1. Дистанционные и аэрокосмические методы исследования
- •2. Особенность аэрокосмических методов исследований
- •3. Аппаратура для выполнения аэрокосмических съемок
- •4. Аэрокосмическое зондирование как научная дисциплина
- •5. Космические системы изучения природных ресурсов – Ресурс, Landsat, Spot, eos.
- •6.Понятие о цифровых и аналоговых снимках. Достоинства, недостатки.
- •7.Аэрокосмические снимки – активные, пассивные. Изобразительные свойства снимков – радиометрические, геометрические.
- •8.Основные типы съемочных систем, режимы передачи информации.
- •8. Основные типы съемочных систем, режимы передачи информации.
- •9.Оптико-электронные кадровые и цифровые камеры. Панорамные фотоаппараты.
- •10. Оптико-механические сканеры, разновидности.
- •11. Методы получения информации по снимкам – дешифрирование, фотограмметрическая обработка, компьютерные технологии.
- •12.Аэрокосмическое картографирование, моделирование и прогнозирование.
- •13. Спектр электромагнитных волн. Диапазон спектра излучения.
- •14. Ультракороткие радиоволны.
- •15. Коэффициент спектральной яркости. Спектрометрирование.
- •16. Радиодиапазон, свч-диапазон, l- диапазон.
- •17. Собственное излучение Земли – инфратепловое, радиотепловое. Инверсия.
- •19 Коэффициент спектральной яркости (r). Кривая спектральной яркости
- •20 Искусственное освещение местности. Влияние атмосферы на регистрируемое излучение.
- •21 Влияние облачности, атмосферная рефракция. Излучение, поглощение, рассеивание.
- •22 Спектральная прозрачность атмосферы, окна прозрачности.
- •23. Проникновение солнечного излучения в воду
- •24. Методы регистрации излучения
- •25. Авиационные носители съемочной аппаратуры. Искусственные спутники Земли. Пилотируемые космические корабли. Орбитальная ориентация.
- •26 Форма орбит, наклонение, высота, положение плоскости орбиты по отношению к Солнцу космических летательных аппаратов.
- •27. Геостационарная орбита. Солнечно-синхронная орбита. Действующие в мире космодромы.
- •28. Глобальная съемка. Орбиты для глобальной съемки высокого разрешения. Геосинхронная орбита.
- •29. Разновидности космические съемок – фотографическая, сканерная, радиолокационная, стереоскопическая.
- •30. Различные виды разрешения – географическое, радиометрическое, спектральное, тепловое, временное.
- •31. Генерализация изображения на аэрофотокосмоснимках. Аэрокосмическая генерализация, закономерности аэрокосмической генерализации.
- •32. Уровни генерализации, значение генерализации, рентгеноскопичность. Узловые точки перестройки изображения.
- •33. Суть дешифрирования снимков. Виды дешифрирования.
6.Понятие о цифровых и аналоговых снимках. Достоинства, недостатки.
Все аэрокосмические снимки принято делить на аналоговые (фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов — пикселов', яркость каждого пиксела характеризуется одним числом. Аэрокосмический снимок состоит из миллионов пикселов. При выполнении практических работ приходится отличать исходные (первичные) снимки, которые получены непосредственно в результате съемки, от их копий и преобразованных снимков, поступающих к потребителям после предварительной обработки. При аналоговой съемке исходным снимком считается оригинальный фотонегатив, при сканерной — «сырой» файл с записью изображения цифрового снимка без какой-либо его коррекции.
Кадровые, прежде всего аналоговые снимки, отличающиеся наивысшей геометрической точностью, наиболее пригодны для точных измерений, но они ограничены в получении радиометрической информации. Сканерные снимки, получаемые во всех спектральных зонах оптического диапазона, включая инфракрасную тепловую, могут регистрировать больше энергетических уровней излучения и обладают наиболее высокой радиометрической точностью. Радиолокационные снимки по своим геометрическим и радиометрическим свойствам уступают фотографическим и сканерным, но их можно получать в
любую погоду, даже когда земная поверхность закрыта сплошным облачным покровом.
Преимущество цифровой аэрофотосъемки перед аналоговой:
Отсутствие процессов фотохимической обработки и необходимости в фотолаборатории;
Отсутствие процесса сканирования аэрофотоснимков;
Отсутствие деформации фотоматериала и связанных с ней геометрических искажений аэрофотоснимков;
Более высокое фотометрическое качество: проработка деталей в глубоких тенях;
Отсутствие необходимости внутреннего ориентирования снимков по координатным меткам при фотограмметрической обработке;
Отсутствие следов механических повреждений и пыли на изображении.
7.Аэрокосмические снимки – активные, пассивные. Изобразительные свойства снимков – радиометрические, геометрические.
Аэрокосмический снимок — это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.
Аэрокосмические съемки, выполняемые при специально создаваемом искусственном освещении, называются активными, а при естественном (солнечном) — пассивными. К пассивным относят съемки, которые предусматривают регистрацию отраженного солнечного или собственного излучения Земли, а к активным — регистрацию отраженного искусственного излучения.
Аэрокосмические снимки характеризуются рядом свойств: изобразительные, радиометрические и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.