
- •Вопрос 1.Роль мк в природе.
- •1)Участие в круговороте веществ.
- •Вопрос 2. Морфология бактерий
- •4)Нитевидные.
- •Вопрос 3. Методы окраски мо
- •Вопрос1. Генетическаятрансформация: трансформация, конъюгация, трансдукция.
- •Вопрос 2. Круговорот серы
- •Вопрос 3. Накопительная культура
- •Вопрос 1. Круговорот азота в биосфере
- •Вопрос 2. Отличительные особенности эукариот и прокариот
- •Вопрос 3. Методы стерилизации
- •Вопрос 1. Строение бактериальной клетки.
- •15)Донорные ворсинки(пили)-носители конъюгативных f-и r-плазмид.Поэтому имеют полость.При конъюгации пили двух бактерий соединяются. Их 1-2штуки на клетку.
- •16)Фимбрии(реснички)-прикреплены кл.Ст. Короче(0.1-12мкм) и толще(25нм).
- •17)Различные гранулы, запасаемых веществ в цитоплазме
- •Вопрос 2. Генетический аппарат мо
- •Вопрос 3.Культивирование ана- и аэробных организмов.
- •Вопрос 1. Предмет и задачи мб,этапы развития
- •Вопрос 2. Размножение бактерий
- •Вопрос 3. Назначение и методы фиксации мб препаратов
- •Вопрос 1. Строение и ф-ии клет.Стенки,хим.Состав и выявление
- •Вопрос 2. Закономерности роста популяции в период(стационар)культуры.Кривая и фазы роста.
- •Вопрос 3. Методы получения чистой кльтуры
- •Вопрос 1. Гр- мо,особенности строения кл.Ст.
- •Вопрос 2. Разновидности микроскопов,особенности,разреш.Способности,назначение
- •1)Светлопольная микроскопия
- •2)Микроскопия в темном поле
- •Вопрос 3. Посев на жидкие среды и их назначение
- •Вопрос 1. Круговорот серы
- •Вопрос 2. Рост отдельных мо и рост популяции
- •Вопрос 3. Посев на плотные питательные среды,назначение этих сред.
- •Вопрос 1. Первый этап развития мб,
- •Вопрос 2. Внехромосомные факторы наследственности
- •Вопрос 3. Метод предельных разведений.
- •III этап-Эпоха Пастера и Коха.
- •1857 Г.-Брожения. 1860 г.-Самопроизвольное зарождение. 1865 г.-Болезни вина и пива.
- •1868 Г.-Болезни шелковичных червей.1881 г. -Зараза и вакцина. 1885 г.-Предохранение от бешенства».
- •Вопрос 2. Генетический аппарат мо
- •Вопрос 3. Метод Коха.
- •Вопрос1. Современные этапы в развитии микробиологии, его особенности.
- •Вопрос 2. Непрерывные и синхронизированные структуры, способы их получения и назначения.
- •Вопрос 3. Мпб и мпа, назначение и применение.
- •1) Общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар);
- •1) Среды специального назначения.
- •2) Общего назначения . Подходят для культивирования большинства бактерий ----а)мясопептонный агар мпа
- •Вопрос 1. Факторы среды, влияющие на рост микроорганизмов
- •Вопрос 2. Особенности ядерного аппарата у прокариот в сравнении с эукариотами.
- •Вопрос 3. Накопительные культуры , принцип элективности.
- •Вопрос 1. Строение прокариот.
- •Вопрос 2. Поступление питательных веществ в бактериальную клетку.
- •Вопрос3. Метод количественного учёта бактерий.
- •3.Определение биомассы. Чтобы определить массу сухих клеток, центрифужную пробирку или фильтр с осадком мо помещают в сушильный шкаф, высушивают и взвешивают.
- •Вопрос1. Принцип систематики и классификации бактерий.
- •1949Г-Красильников-определитель 1923г-Берджи-определитель(33группы)
- •1Морфологические признаки
- •2Тинкториальность(способность окрашиваться разными красителями)
- •3Культуральные свойства:
- •Вопрос 2.Условия культивирования микроорганизмов.
- •Вопрос 3. Строение клеточной мембраны , окраска по Граму.
- •Вопрос 1. Принцип работы лактозного оперона
- •Вопрос 2. Механизм питания бактерий
- •Вопрос 3. Способы культивирования бактерий.
- •Вопрос 1. Способы получения энергии у бактерий.
- •Вопрос 2. Питательные среды и их классификации.
- •1По составу среды подразделяются на естественные, искусственные и синтетические.
- •2По физическому состоянию среды бывают жидкие, плотные и сыпучие.
- •Вопрос 3. Этапы идентификации микроорганизмов.
- •Вопрос 1. Анаболические процессы у бактерий.
- •Вопрос 2. Круговорот азота в биосфере
- •Вопрос 3. Определение некультивируемых форм.
- •Вопрос 2. Запасные вещества бактерий и их назначение
- •Вопрос 3. Методы определения подвижности бактерий
- •3)Посевом бактерий в водный конденсат скошенного столбика агара (подвижные виды переплывают из конденсата на поверхность среды и колонизируют её).
- •Вопрос 1. Факторы патогенности бактерий.
- •Вопрос 2. Способы жизни микроорганизмов
- •Автотрофы (за счет со2)
- •Гетеротрофы (за счет углерода готовых органических соединений)
- •Вопрос 3. Общие требования,предъявляемые к пит.Средам
- •Вопрос 3. Антибиотикочувствительность
- •Вопрос 1. III этап-Эпоха Пастера и Коха.
- •1857 Г.-Брожения. 1860 г.-Самопроизвольное зарождение. 1865 г.-Болезни вина и пива.
- •1868 Г.-Болезни шелковичных червей.1881 г. -Зараза и вакцина. 1885 г.-Предохранение от бешенства».
- •Вопрос 2. Вирусы,особенности строения и функции.
- •Вопрос 2. Строение вирусов. Разнообразие вирусов.
- •Вопрос 3. Капсула бактерий,окраска капсул
- •Вопрос 3. Хранение культур бактерий.Понятие «музейная культура»
- •5)Хранение в dist. Или 1%-ном NaCl.Мо предварительно выращивают в оптимальных условиях, после чего клетки суспендируют в дистиллированной воде или 1%-ном растворе хлорида натрия.
- •Вопрос 1. Круговорот серы
- •Вопрос 2. Принцип работы лактозного оперона
- •Вопрос 3. Методы диагностики вирусов
- •1)Культуры клеток для выявления вирусов
- •4)Появление гигантских многоядерных клеток и др;
- •Вопрос 1. Круговорот азота в биосфере
- •Вопрос 2. Понятие и классификация вирусов. (см 21 и 22 билет)
- •Ictv классификация
- •Вопрос 1. Археи,история изучения,место в биолог.Мегасистеме
- •1)Формы клеток архебактерий в целом сходны с таковыми эубактерий(есть кокки, палочки, извитые). 2)Особенность архебактерий — отсутствие сложных многоклеточных форм, мицелиальных и трихомных.
- •Вопрос 2. Понятие вирусной инфекции. Экология вирусов
- •Вопрос 3. Методы микроскопии в мб
Вопрос 2. Вирусы,особенности строения и функции.
Вирусы – микроорганизмы(15-400нм), составляющие царство Vira.
Отличительные признаки:
1) содержат РНК или ДНК;
2) не имеют собственных белоксинтезирующих и энергетических систем;
3) не имеют клеточной организации;
4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и НК происходит в разных местах и в разное время);
5) облигатный паразитизм вирусов реализуется на генетическом уровне;
6) вирусы проходят через бактериальные фильтры.
7)убиквитарность.
Вирусы могут существовать во внеклеточной форме(вирион) и внутриклеточной (вирус).
По форме вирионы могут быть:
1) округлыми;
2) палочковидными;
3) в виде правильных многоугольников;
4) нитевидными и др.
В центре вириона – вирусная НК, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. НК+ капсидная оболочка= нуклеокапсид.
Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.
Строение ДНК– и РНК-вирусов принципиально не отличается от НК других МО. У некоторых вирусов в ДНК встречается урацил.
ДНК может быть:1)д.ц.;2)о.ц.;3)кольцевой;4)д.ц., но с одной более короткой цепью;5)д.ц, но с одной непрерывной, а с другой фрагментированной цепями.
РНК может быть:1) однонитевой;2) линейной двухнитевой;3) линейной фрагментированной;4) кольцевой;
5) содержащей две одинаковые однонитевые РНК.
Вирусные белки подразделяют на:
1)геномные – нуклеопротеиды.Обеспечивают репликацию вирусных НК и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;
2)белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический или смешанный;
3)белки суперкапсидной оболочки-это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.
Функции вирусов:
1)Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды),(общ.численность в океане — около 4·1030,численность фагов в донных отложениях океана практически не зависит от глубины и всюду очень высока. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены. 2)Вирусы играют важную роль в регуляции численности популяций живых организмов.3)Вызывают вирусные заболевания всего живого.4)используются для создания вакцин.
Билет №22
Вопрос 1. Ассимиляция неорганического азота – переход неорганического азота (типа нитрата) в органическую форму азота как, например, аминокислоты. Нитрат переходит с помощью ферментов сначала в нитрит (редуктаза нитрата), затем в аммиак (редуктаза нитрита). Аммиак входит в состав аминокислот.
Азот
Азот необходим бактериям для синтеза аминокислот (белков), шуриновых и пирим иди новых нуклеотидов, а также некоторых витаминов. Поскольку азот во всех живых организмах содержится в восстановленной форме, все минеральные формы азота с большей, чем у аммиака, степенью окисленности должны быть восстановлены.
Ряд микроорганизмов способен утилизировать азот только из органических соединений (ами-ногетеротрофы). Некоторые из микроорганизмов усваивают азот в виде неорганических форм (аминоаутотрофы). Однако многие микроорганизмы способны использовать как органический, так и минеральный азот.
Использование неорганического азота
В природе атомы минерального азота существуют в различной степени окисленности: от №+ (Ы20Е, азотный ангидрид) до №" (1ЧН3, аммиак). Степень усвояемости минеральных соединений азота бактериями определяется лёгкостью их превращения в аммиак, так как он является самым простым предшественником высокомолекулярных азоторганических соединений. В этой группе бактерий возможны два разнонаправленных процесса: ассимиляция (связывания минеральных форм азота в органический материал) и диссимиляция (выделения газообразных форм азота).
• Ассимиляционные процессы. Связывание минеральных форм азота происходит в ходе азотфиксации, ассимиляции аммиака и ассимиляционной нитратредукции. Азотфиксация. Азотфиксирующие бактерии (например, Rhizobacter, Azotobacter, Clostridium, Klebsiella др.) способны утилизировать азот из атмосферного воздуха, восстанавливая его до аммония с помощью специального фермента (нитрогеназа) в процессе, называемом азотфиксация.
Ассимиляция аммиака. Большинство бактерий усваивает аммоний в ходе ассимиляции аммиака. Бактерии, растущие на средах с аммонием, могут непосредственно включать его в органические соединения. Следует помнить, что после потребления неорганических аммонийных солей в среде накапливаются анионы (30|", СГ, Н3РО^" и др.), снижающие рН среды, что замедляет рост культур. Аммонийные соли органических кислот менее подкисляют среду и более благоприятны для роста бактерий.
Ассимиляционная нитратредукция. Подавляющее большинство бактерий и грибов, как и растения, усваивают нитрат в процессе ассимиляционной нитратредукции. На первом этапе нитраты восстанавливаются до нитритов, цикл этих превращений катализирует специфический фермент — ассимиляционная нитратредуктаза В. Второй этап представляет комплекс восстановительных реакций, катализируемых нитритредуктазой, что приводит к образованию аммиака, который используется для синтеза аминокислот и других азотсодержащих компонентов клетки.
Вопрос-ассимиляция молекулярного азота Азотфиксирующие бактерии (например, Rhizobacter, Azotobacter, Clostridium, Klebsiella др.) способны утилизировать азот из атмосферного воздуха, восстанавливая его до аммония с помощью специального фермента (нитрогеназа) в процессе, называемом азотфиксация о способности аэробных микроорганизмов использовать молекулярный азот можно судить по их росту на безазотистой среде Эшби(маннит, К2НРО4, MgSO4, NaCl, K2SO4, CaCO3, агар). Среду разливают по пробиркам, стерилизуют и готовят скошенный агар. Посев проводят штрихом. Продолжительность культивирования 7-10 суток. Обильный рост на среде Эшби может свидетельствовать о принадлежности бактерий к азотфиксаторам.
Молекулярный азот могут фиксировать и анаэробные бактерии.
Первый анаэробный азотфиксатор был выделен из почвы С.Н. Виноградским и назван им в честь Пастера Clostridium pasterianum. Небольшая способность к связыванию азота отмечена у пропионовых б-ий.
Молекула N2 чрезвычайно прочна. Чтобы разорвать три связи между двумя атомами в молекуле N2, необходимо затратить 941 кДж/моль, поэтому восстановление N2 до NH3 химическим путем – очень энергоемкий процесс. Фиксация молекулярного азота, до сих пор обнаруженная только у прокариот, осуществляется с помощью нитрогеназы
В течение длительного времени не удавалось обнаружить какие-либо частично восстановленные промежуточные соединения. Единственным идентифицированным продуктом восстановления был аммиак. Недавно быстрая остановка нитрогеназной реакции в кислой или щелочной среде позволила обнаружить гидразин. Вероятно, промежуточные соединения в процессе восстановления молекулы N2 остаются прочно связанными с нитрогеназой. По проведенным измерениям, для восстановления 1 молекулы N2 требуется не менее 12 молекул АТФ. Таким образом, процесс азотфиксации связан с затратой большого количества клеточной энергии. Помимо N2 нитрогеназа может восстанавливать ряд других субстратов, таких как N20, С2Н2 и его аналоги, N3-, CN-. В отсутствие N2 нитрогеназа катализирует выделение молекулярного водорода в реакции, протекающей с затратой АТФ. Это дает основание предполагать, что нитрогеназа является результатом дальнейшего усложнения молекулы гидрогеназы, приобретшей способность катализировать не только восстановление протонов, ведущее к выделению Н2, но и ряд других субстратов, в том числе и N2.