- •1Матрицы.Действия с матрицами
- •3.Миноры и алгебраические дополнения.Обратная матрица
- •1) Если система (2.3) имеет единственное решение, определяемое по формулам: .
- •7. Векторы. Действия с векторам. Коллиниарность векторов
- •8.Линейная зависимость векторов
- •10. Понятие базис.Разложение вектора по базису.
- •11.Декартовая система координат. Направление косинуса вектора.
- •12. Скалярное произведение векторов. Необходимое и достаточное условие.
- •13.Векторное произведение. Необходимое и достаточное условие векторов.
- •14. Смешанное произведение векторов. Компланарность векторов.
- •15. Плоскость в пространстве. Основные уравнения плоскости.
- •16. Расстояние от произвольной точки до плоскости. Условия перпендикулярности и параллельности прямых на плоскости. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.
- •17. Прямая в пространстве. Различные уравнения прямой
- •18. Переход от общего уравнения прямой к кононическому.
- •19. Взаимное расположение прямой в пространстве
- •20. Прямая на плоскости. Различные формы уравнений прямой на плоскости.
- •21. Расстояние от произвольной точки до прямой на плоскости. Условия параллельности и перпендикулярности прямых на плоскости.
- •22. Каноническое уравнение прямых второго порядка. Элипс, гипербола, парабола
- •23. Преобразование координат на плоскости. Приведение общего уравнения кривой второго порядка у каноническому виду
- •24.Множества. Действительные числа. Логически символы. Окрестность точки
- •25. Числовые последовательности. Предел числовой последовательности. Теорема вейерштрасса.
- •26. Определение функции. Способы задания функции. Основные характеристики функций. Элементарные функции.
- •27. Предел функции в точке.
- •28.Предел функции при X→∞. Односторонние пределы.
- •29. Бесконечно малые и бесконечно большие функции. Свойства бесконечно малые и бесконечно большие функций.
- •30. Связь бесконечно малых и бесконечно больших. Их свойства.
- •31. Теорема о связи между функцией, ее пределом и бесконечно малой величиной.
- •32. Признак существования предела функции. Первый замечательный предел. Первый замечательный предел
- •33. Основные свойства пределов функций. Основные типы неопределенностей.
- •Основные неопределенности пределов и их раскрытие.
- •34. Второй замечательный предел. Три формы записи второго замечательного предела.
- •35. Эквивалентные бесконечно малые. Сравнение бесконечно малых.
- •36. Непрерывность функции в точке. Три определения непрерывности.
- •37. Точки разрыва функции и их классификация
- •38. Основные теоремы о непрерывных функциях.
- •39. Свойства функций непрерывных на отрезке. Геометрическая интерпретация этих свойств.
14. Смешанное произведение векторов. Компланарность векторов.
Определение 6.4. Смешанным произведением векторов а, b и с называется результат скалярного умножения векторного произведения [ab] на вектор с.
Обозначение: abc = [ab]c.
Свойства смешанного произведения.
1) Смешанное произведение [ab]c равно объему параллелепипеда, построенного на приведенных к общему началу векторах a,b,c, если они образуют правую тройку, или числу, противоположному этому объему, если abc – левая тройка. Если a,b и скомпланарны, то [ab]c = 0.
Доказательство.
а) Если a,b и с компланарны, то вектор [ab] ортогонален плоскости векторов а и b, и, следовательно, [ab] c. Поэтому [ab]c = 0.
в)
Если a,b,c не
компланарны, [ab]c =
|[ab]||c|
= S·|c|cosφ,
где φ – угол между с и
[ab].
Тогда
|c|cosφ –
высота рассматриваемого параллелепипеда.
Таким образом, [ab]c =
V,
где выбор знака зависит от величины
угла между с и
[ab].
Утверждение доказано.
Следствие. [ab]c = a[bc].
Действительно, обе части равенства представляют объем одного и того же переллелепипеда. Поэтому положение векторных скобок в смешанном произведении не важно, и в его обозначении скобки не ставятся : abc.
2) Если a = {Xa, Ya, Za}, b = {Xb, Yb, Zb}, c = {Xc, Yc, Zc}, то
abc =
.
Доказательство. Используя координатную запись скалярного и векторного произведения, запишем:[ab]c = (YaZb – YbZa)Xc + (XbZa – XaZb)Yc + (XaYb – XbYa)Zc = .
Пример 1. Найдем смешанное произведение векторов a = {-3, 2, -1}, b = {2, 1, 0}, c = {-1, 3, -1}. Для этого вычислим определитель, составленный изихкоодинат:
следовательно,
векторы компланарны.
Пример 2. Найдем объем пирамиды с вершинами в точках А(0, -3, -1), В(3, 3, 2),
С(1, 0, -3) и D(2, -1, 1).
Отметим, что объем пирамиды ABCD в 6 раз меньше объема параллелепипеда, построенного на векторах AB, AC и AD. Найдем координаты этих векторов:
AB =
{3,6,3}, AC =
{1,3,-2}, AD =
{2,2,2}. Тогда AB AC AD =
Cледовательно, объем пирамиды равен 18:3 =6.
Вектора, параллельные одной плоскости или лежащие на одной плоскости называют компланарными векторами.
Условия компланарности векторов
Три вектора компланарны если их смешанное произведение равно нулю.
Три вектора компланарны если они линейно зависимы.
15. Плоскость в пространстве. Основные уравнения плоскости.
Плоскость в пространстве.
Получим сначала уравнение плоскости, проходящей через точку М0(х0 ,у0 ,z0) перпендикулярно вектору n = {A,B,C},называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z) вектор М0М = {x - x0 , y - y0 , z - z0) ортогонален вектору n, следовательно, их скалярное произведение равно нулю:
A(x - x0) + B(y - y0) + C(z - z0) = 0. (8.1)
Получено уравнение, которому удовлетворяет любая точка заданной плоскости – уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
После приведения подобных можно записать уравнение (8.1) в виде:
Ax + By + Cz + D = 0, (8.2)
где D = -Ax0 - By0 - Cz0. Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.
Неполные уравнения плоскости.
Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.
Рассмотрим возможные виды неполных уравнений:
1) D = 0 – плоскость Ax + By + Cz = 0 проходит через начало координат.
2) А = 0 – n = {0,B,C} Ox, следовательно, плоскость By + Cz + D = 0 параллельна оси Ох.
3) В = 0 – плоскость Ax + Cz +D = 0 параллельна оси Оу.
4) С = 0 – плоскость Ax + By + D = 0 параллельна оси Оz.
5) А = В = 0 – плоскость Cz + D = 0 параллельна координатной плоскости Оху (так как она параллельна осям Ох и Оу).
6) А = С = 0 – плоскость Ву + D = 0 параллельна координатной плоскости Охz.
7) B = C = 0 – плоскость Ax + D = 0 параллельна координатной плоскости Оуz.
8) А = D = 0 – плоскость By + Cz = 0 проходит через ось Ох.
9) B = D = 0 – плоскость Ах + Сz = 0 проходит через ось Оу.
10) C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz.
11) A = B = D = 0 – уравнение Сz = 0 задает координатную плоскость Оху.
12) A = C = D = 0 – получаем Ву = 0 – уравнение координатной плоскости Охz.
13) B = C = D = 0 – плоскость Ах = 0 является координатной плоскостью Оуz.
Если же общее уравнение плоскости является полным ( то есть ни один из коэффициентов не равен нулю), его можно привести к виду:
(8.3)
называемому уравнением плоскости в отрезках. Способ преобразования показан в лекции 7. Параметры а, b и с равны величинам отрезков, отсекаемых плоскостью на координатных осях.
