- •1Матрицы.Действия с матрицами
- •3.Миноры и алгебраические дополнения.Обратная матрица
- •1) Если система (2.3) имеет единственное решение, определяемое по формулам: .
- •7. Векторы. Действия с векторам. Коллиниарность векторов
- •8.Линейная зависимость векторов
- •10. Понятие базис.Разложение вектора по базису.
- •11.Декартовая система координат. Направление косинуса вектора.
- •12. Скалярное произведение векторов. Необходимое и достаточное условие.
- •13.Векторное произведение. Необходимое и достаточное условие векторов.
- •14. Смешанное произведение векторов. Компланарность векторов.
- •15. Плоскость в пространстве. Основные уравнения плоскости.
- •16. Расстояние от произвольной точки до плоскости. Условия перпендикулярности и параллельности прямых на плоскости. Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.
- •17. Прямая в пространстве. Различные уравнения прямой
- •18. Переход от общего уравнения прямой к кононическому.
- •19. Взаимное расположение прямой в пространстве
- •20. Прямая на плоскости. Различные формы уравнений прямой на плоскости.
- •21. Расстояние от произвольной точки до прямой на плоскости. Условия параллельности и перпендикулярности прямых на плоскости.
- •22. Каноническое уравнение прямых второго порядка. Элипс, гипербола, парабола
- •23. Преобразование координат на плоскости. Приведение общего уравнения кривой второго порядка у каноническому виду
- •24.Множества. Действительные числа. Логически символы. Окрестность точки
- •25. Числовые последовательности. Предел числовой последовательности. Теорема вейерштрасса.
- •26. Определение функции. Способы задания функции. Основные характеристики функций. Элементарные функции.
- •27. Предел функции в точке.
- •28.Предел функции при X→∞. Односторонние пределы.
- •29. Бесконечно малые и бесконечно большие функции. Свойства бесконечно малые и бесконечно большие функций.
- •30. Связь бесконечно малых и бесконечно больших. Их свойства.
- •31. Теорема о связи между функцией, ее пределом и бесконечно малой величиной.
- •32. Признак существования предела функции. Первый замечательный предел. Первый замечательный предел
- •33. Основные свойства пределов функций. Основные типы неопределенностей.
- •Основные неопределенности пределов и их раскрытие.
- •34. Второй замечательный предел. Три формы записи второго замечательного предела.
- •35. Эквивалентные бесконечно малые. Сравнение бесконечно малых.
- •36. Непрерывность функции в точке. Три определения непрерывности.
- •37. Точки разрыва функции и их классификация
- •38. Основные теоремы о непрерывных функциях.
- •39. Свойства функций непрерывных на отрезке. Геометрическая интерпретация этих свойств.
23. Преобразование координат на плоскости. Приведение общего уравнения кривой второго порядка у каноническому виду
Приведение уравнения второго порядка к каноническому виду.
Определение 11.9. Линия, определяемая общим уравнением второго порядка
, (11.5)
называется алгебраической линией второго порядка.
Для
квадратичной формы
можно
задать матрицу
. (11.6)
Для того, чтобы перейти к новой системе координат, в которой уравнение линии будет иметь канонический вид, необходимо провести два преобразования:
1) поворот координатных осей на такой угол, чтобы их направление совпало с направлением осей симметрии кривой (если она имеет две оси);
2) параллельный перенос, при котором начало координат совмещается с центром симметрии кривой (если он существует).
Замечание. Для параболы новые оси координат должны располагаться параллельно и перпендикулярно директрисе, а начало координат – совпасть с вершиной параболы.
Поскольку в канонических уравнениях кривых второго порядка отсутствуют произведения переменных, необходимо перейти к координатной системе, определяемой базисом из ортонормированных собственных векторов матрицы А. В этом базисе уравнение (11.5) примет вид:
(в
предположении, что λ1,2 не
равны 0).
Зададим последующий параллельный перенос формулами:
.
Получим в новой координатной системе
уравнение
. (11.7)
Рассмотрим возможные геометрические образы, определяемые этим уравнением в зависимости от знаков λ1, λ2 и :
1) если собственные числа матрицы А λ1 и λ2 и одного знака, уравнение (11.7) представляет собой каноническое уравнение эллипса:
,
где
(случаи
и
,
имеющего знак, противоположный
знаку λ1, λ2,
будут рассмотрены в следующей лекции).
2) если λ1 и λ2 имеют разные знаки, уравнение (11.7) является каноническим уравнением гиперболы:
или , в зависимости от знака .
В случае, когда одно из собственных чисел матрицы А равно 0, уравнение (11.5) в результате двух преобразований координат можно привести к виду:
, (11.8)
являющимся каноническим уравнением параболы.
Пример.
Приведем к каноническому виду уравнение второго порядка
3x² + 10xy +3y² - 2x – 14y – 13 = 0.
Матрица квадратичной формы 3x² + 10xy + 3y² имеет вид:
.
Найдем
ее собственные числа и собственные
векторы. Составим характеристическое
уравнение:
Для
координат собственного вектора е1,
соответствующегоλ1,
получим с учетом нормировки:
,
откуда e1 =
{
}.
Аналогично найдем е2:
,
e2 =
{
}.
Составим матрицу перехода к новому
базису, столбцами которой будут координаты
собственных векторов:
.
Тогда
.
Подставив эти выражения в исходное
уравнение, получим его вид в новой
системе координат:
Заметим,
что коэффициентами при x²
и y²
являются λ1 и λ2.
Преобразуем
полученное уравнение:
Зададим
параллельный перенос формулами:
.
Получим уравнение:
,
а после деления на 8:
-
каноническое уравнение гиперболы.
